Skip to main content
Log in

Diophantine approximation and Cantor sets

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We provide an explicit construction of elements of the middle third Cantor set with any prescribed irrationality exponent. This answers a question posed by Kurt Mahler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamczewski, B., Bugeaud, Y.: Mesures de transcendance et aspects quantitatifs de la méthode de Thue–Siegel–Roth–Schmidt. Preprint

  2. Allouche J.-P. and Shallit J.O. (2003). Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Beresnevich V., Dickinson H. and Velani S.L. (2001). Sets of exact logarithmic order in the theory of diophantine approximation. Math. Ann. 321: 253–273

    Article  MathSciNet  MATH  Google Scholar 

  4. Bugeaud Y. (2003). Sets of exact approximation order by rational numbers. Math. Ann. 327: 171–190

    Article  MathSciNet  MATH  Google Scholar 

  5. Bugeaud Y. (2004). Approximation by algebraic numbers. Cambridge Tracts in Mathematics 160, Cambridge

    MATH  Google Scholar 

  6. Jarní k V. (1931). Über die simultanen diophantische approximationen. Math. Z. 33: 505–543

    Article  MathSciNet  Google Scholar 

  7. Kleinbock D., Lindenstrauss E. and Weiss B. (2004). On fractal measures and diophantine approximation. Select. Math. 10: 479–523

    Article  MathSciNet  MATH  Google Scholar 

  8. Kleinbock D. and Weiss B. (2005). Badly approximable vectors on fractals. Isr. J. Math. 149: 137–170

    Article  MathSciNet  MATH  Google Scholar 

  9. Kristensen S. (2006). Approximating numbers with missing digits by algebraic numbers. Proc. Edinb. Math. Soc. 49: 657–666

    Article  MathSciNet  MATH  Google Scholar 

  10. Kristensen S., Thorn R. and Velani S. (2006). Diophantine approximation and badly approximable sets. Adv. Math. 203: 132–169

    Article  MathSciNet  MATH  Google Scholar 

  11. Levesley J., Salp C. and Velani S.L. (2007). On a problem of K Mahler: diophantine approximation and cantor sets. Math. Ann. 338: 97–118

    Article  MathSciNet  MATH  Google Scholar 

  12. Mahler K. (1984). Some suggestions for further research. Bull. Austral. Math. Soc. 29: 101–108

    Article  MathSciNet  MATH  Google Scholar 

  13. van der Poorten A.J. and Shallit J. (1992). Folded continued fractions. J. Number Theory 40: 237–250

    Article  MathSciNet  MATH  Google Scholar 

  14. Ridout D. (1957). Rational approximations to algebraic numbers. Mathematika 4: 125–131

    Article  MathSciNet  MATH  Google Scholar 

  15. Schmidt, W.M.: Approximation to algebraic numbers. Monographie de l’Enseignement Mathématique 19, Genève, (1971)

  16. Shallit J. (1979). Simple continued fractions for some irrational numbers. J. Number Theory 11: 209–217

    Article  MathSciNet  MATH  Google Scholar 

  17. Weiss B. (2001). Almost no points on a Cantor set are very well approximable. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457: 949–952

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Bugeaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugeaud, Y. Diophantine approximation and Cantor sets. Math. Ann. 341, 677–684 (2008). https://doi.org/10.1007/s00208-008-0209-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0209-4

Mathematics Subject Classification (2000)

Navigation