Skip to main content
Log in

Holomorphic functions on bundles over annuli

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider a family \(\big\{ E_m(D,M) \big\}\) of holomorphic bundles constructed as follows:from any given \(M\in GL_n({\mathbb{Z}})\) , we associate a “multiplicative automorphism” \(\varphi\) of \(({\mathbb{C}}^*)^n\) . Now let \(D\subseteq ({\mathbb{C}}^*)^n\) be a \(\varphi\) -invariant Stein Reinhardt domain. Then E m (D, M) is defined as the flat bundle over the annulus of modulus m > 0, with fiber D, and monodromy \(\varphi\) . We show that the function theory on E m (D, M) depends nontrivially on the parameters m, M and D. Our main result is that

$$E_m(D,M) \text{\ is Stein if and only if\ } m \log \rho (M) \leq 2 \pi^2,$$

where ρ(M) denotes the max of the spectral radii of M and M −1. As corollaries, we: (1) obtain a classification result for Reinhardt domains in all dimensions; (2) establish a similarity between two known counterexamples to a question of J.-P. Serre; and (3) suggest a potential reformulation of a disproved conjecture of Siu Y.-T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baernstein, A., Kovalev, L.: Private communication

  2. Chen B.-Y. and Zhang J.-H. (2003). The Serre problem on certain bounded domains. Asian J. Math. 7(4): 511–518

    MATH  MathSciNet  Google Scholar 

  3. Cœuré G. and Lœb J.-J. (1985). A counterexample to the Serre problem with a bounded domain of \({\mathbb{C}}^2\) as fiberAnn. Math. 122: 329–334

    Article  Google Scholar 

  4. Demailly, J.-P.: Complex analytic and algebraic geometry. http://www-fourier.ujf-grenoble.fr/~demailly/books.html

  5. Demailly J.-P. (1978). Un exemple de fibré holomorphe non de Stein à fibre \({\mathbb{C}}^2\) ayant pour base le disque ou le planInvent. Math. 48(3): 293–302

    Article  MATH  MathSciNet  Google Scholar 

  6. Diederich K. and Fornaess J. (1977). Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions. Invent. Math. 39: 129–141

    Article  MATH  MathSciNet  Google Scholar 

  7. Forstnerič, F.: The homotopy principle in complex analysis: a survey. Explorations in complex and Riemannian geometry. Contemp. Math., 332, Amer. Math. Soc., Providence, RI, pp. 73–99 (2003)

  8. Fannjiang A. and Wołowski L. (2003). Lech noise induced dissipation in Lebesgue-measure preserving maps on d-dimensional torus. J. Stat. Phys. 113(1–2): 335–378

    Article  MATH  Google Scholar 

  9. Mok N. (1980). Le problème de Serre pour les surfaces de Riemann. C. R. Acad. Sci. Paris Sér. A–B 290(4): A179–A180

    MathSciNet  Google Scholar 

  10. Narasimhan R. (1962). The Levi problem for complex spaces. II. Math. Ann. 146: 195–216

    Article  MATH  MathSciNet  Google Scholar 

  11. Oeljeklaus K. and Zaffran D. (2006). Steinness of bundles with fiber a Reinhardt bounded domain. Bull. Soc. Math. France 134(4): 451–473

    MATH  MathSciNet  Google Scholar 

  12. Pflug P. and Zwonek W. (2004). The Serre problem with Reinhardt fibers. Ann. Inst. Fourier 54(1): 129–146

    MATH  MathSciNet  Google Scholar 

  13. Royden H.L. (1974). Holomorphic fiber bundles with hyperbolic fiber. Proc. Am. Math. Soc. 43: 311–312

    Article  MATH  MathSciNet  Google Scholar 

  14. Schinzel A. and Zassenhaus H. (1965). A refinement of two theorems of Kronecker. Mich. Math. J. 12: 81–85

    Article  MATH  MathSciNet  Google Scholar 

  15. Shimizu S. (1989). Automorphisms of bounded Reinhardt domains. Jpn. J. Math. (N.S.) 15(2): 385–414

    MATH  MathSciNet  Google Scholar 

  16. Siu Y.T. (1976). Holomorphic fiber bundles whose fibers are bounded Stein domains with zero first Betti number. Math. Ann. 219(2): 171–192

    Article  MATH  MathSciNet  Google Scholar 

  17. Skoda H. (1977). Fibrés holomorphes à base et à fibre de Stein. Invent. Math. 43(2): 97–107

    Article  MATH  MathSciNet  Google Scholar 

  18. Smyth, C.J.: The Mahler measure of algebraic numbers: a survey. http://arxiv.org/abs/math/0701397

  19. Stehlé J.-L. (1974). Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques. C. R. Acad. Sci. Paris Sér. A 279: 235–238

    MATH  Google Scholar 

  20. Titchmarsh, E.C.: Theory of functions, 2nd edn. Oxford University Press, Oxford (1939)

    MATH  Google Scholar 

  21. Voutier P. (1996). An effective lower bound for the height of algebraic numbers. Acta Arith. 74: 81–95

    MathSciNet  Google Scholar 

  22. Zaffran D. (2001). Serre problem and Inoue-Hirzebruch surfaces. Math. Ann. 319(2): 395–420

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zaffran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaffran, D. Holomorphic functions on bundles over annuli. Math. Ann. 341, 717–733 (2008). https://doi.org/10.1007/s00208-007-0201-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0201-4

Keywords

Navigation