Skip to main content
Log in

Orthonormal dilations of Parseval wavelets

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that any Parseval wavelet frame is the projection of an orthonormal wavelet basis for a representation of the Baumslag–Solitar group

$$BS(1, 2) = \langle{u, t\,|\, utu^{-1} = t^2}\rangle.$$

We give a precise description of this representation in some special cases, and show that for wavelet sets, it is related to symbolic dynamics (Theorem 3.14). We prove that the structure of the representation depends on the analysis of certain finite orbits for the associated symbolic dynamics (Theorem 3.24). We give concrete examples of Parseval wavelets for which we compute the orthonormal dilations in detail; we construct Parseval wavelet sets which have infinitely many non-isomorphic orthonormal dilations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baggett L.W., Courter J.E. and Merrill K.D. (2002) The construction of wavelets from generalized conjugate mirror filters in \(L^2(\mathbb {R}^n)\). Appl. Comput. Harmon. Anal. 13(3): 201–223

    Article  MathSciNet  MATH  Google Scholar 

  2. Bildea S., Dutkay D.E. and Picioroaga G. (2005). MRA super-wavelets. NY. J. Math. 11: 1–19 (electronic)

    MathSciNet  MATH  Google Scholar 

  3. Bratteli, O., Jorgensen, P.E.T.: Wavelets through a looking glass. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston, The world of the spectrum (2002)

  4. Baggett, L.W., Jorgensen, P.E.T., Merrill, K.D., Packer, J.A.: Construction of Parseval wavelets from redundant filter systems. J. Math. Phys. 46(8), 083502, 28 (2005)

    Google Scholar 

  5. Baggett L.W., Medina H.A. and Merrill K.D. (1999) Generalized multi-resolution analyses and a construction procedure for all wavelet sets in \(\mathbb {R}^n\). J. Fourier Anal. Appl. 5(6): 563–573

    Article  MathSciNet  MATH  Google Scholar 

  6. Bakonyi M. and Nævdal G. (2000). The finite subsets of Z 2 having the extension property. J. Lond. Math. Soc. (2) 62(3): 904–916

    Article  MATH  Google Scholar 

  7. Conze J.-P. and Raugi A. (1990). Fonctions harmoniques pour un opérateur de transition et applications. Bull. Soc. Math. France 118(3): 273–310

    MathSciNet  MATH  Google Scholar 

  8. Daubechies, I.: Ten Lectures on Wavelets, Vol 61. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

  9. Dutkay, D.E., Jorgensen, P.E.T., Picioroaga, G.: Unitary representations of wavelet groups and encoding of iterated function systems in solenoids. http://arxiv.org/abs/0706.1483 (2007) (preprint)

  10. Dai X. and Lu S. (1996). Wavelets in subspaces. Michigan Math. J. 43(1): 81–98

    Article  MathSciNet  MATH  Google Scholar 

  11. Dutkay D.E. (2004). Positive definite maps, representations and frames. Rev. Math. Phys. 16(4): 451–477

    Article  MathSciNet  MATH  Google Scholar 

  12. Farb B. and Mosher L. (1998). A rigidity theorem for the solvable Baumslag–Solitar groups (With an appendix by Daryl Cooper). Invent. Math. 131(2): 419–451

    Article  MathSciNet  MATH  Google Scholar 

  13. Farb B. and Mosher L. (1999). Quasi-isometric rigidity for the solvable Baumslag–Solitar groups. II. Invent. Math. 137(3): 613–649

    Article  MathSciNet  MATH  Google Scholar 

  14. Gu Q. and Han D. (2005). Super-wavelets and decomposable wavelet frames. J. Fourier Anal. Appl. 11(6): 683–696

    Article  MathSciNet  MATH  Google Scholar 

  15. Garrigós, G., Hernández, E., Sikić, H., Soria, F., Weiss, G., Wilson, E.: Connectivity in the set of tight frame wavelets (TFW). Glas. Mat. Ser. III 38(58)(1), 75–98 (2003)

    Google Scholar 

  16. Gundy, R.F.: Probability, ergodic theory, and low-pass filters (2006) (preprint)

  17. Han D. and Larson D.R. (2000). Frames, bases and group representations. Mem. Am. Math. Soc. 147(697): x+94

    MathSciNet  Google Scholar 

  18. Han, D., Sun, Q., Tang, W.-S.: Topological and geometric properties of refinable functions and MRA affine frames (2007) (preprint)

  19. Ionascu E.J., Larson D.R. and Pearcy C.M. (1998). On wavelet sets. J. Fourier Anal. Appl. 4(6): 711–721

    Article  MathSciNet  MATH  Google Scholar 

  20. Jorgensen P.E.T. (1989). Positive definite functions on the Heisenberg group. Math. Z. 201(4): 455–476

    Article  MathSciNet  Google Scholar 

  21. Jorgensen P.E.T. (1990). Extensions of positive definite integral kernels on the Heisenberg group. J. Funct. Anal. 92(2): 474–508

    Article  MathSciNet  Google Scholar 

  22. Jorgensen P.E.T. (1991). Integral representations for locally defined positive definite functions on Lie groups. Int. J. Math. 2(3): 257–286

    Article  MathSciNet  Google Scholar 

  23. Krein M. (1940). Sur le problème du prolongement des fonctions hermitiennes positives et continues. C. R. (Doklady) Acad. Sci. URSS (N.S.) 26: 17–22

    MathSciNet  Google Scholar 

  24. Mallat S. (1998). A wavelet tour of signal processing. Academic Press, San Diego

    MATH  Google Scholar 

  25. Martin F. and Valette A. (2000). Markov operators on the solvable Baumslag–Solitar groups. Exp. Math. 9(2): 291–300

    MathSciNet  MATH  Google Scholar 

  26. Paluszyński M., Sikić H., Weiss G. and Xiao S. (2003). Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties (Frames). Adv. Comput. Math. 18(2–4): 297–327

    Article  MathSciNet  MATH  Google Scholar 

  27. Rudin W. (1963). The extension problem for positive-definite functions. Illinois J. Math. 7: 532–539

    MathSciNet  MATH  Google Scholar 

  28. Sasvári Z. (1987). On the extension of positive definite functions. Rad. Mat. 3(2): 235–240

    MathSciNet  MATH  Google Scholar 

  29. Speegle D.M. (1999). The s-elementary wavelets are path-connected. Proc. Am. Math. Soc. 127(1): 223–233

    Article  MathSciNet  MATH  Google Scholar 

  30. The Wutam Consortium. Basic properties of wavelets. J. Fourier Anal. Appl. 4(4–5), 575–594 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorin Ervin Dutkay.

Additional information

D. E. Dutkay’s research supported in part by a grant from the National Science Foundation DMS-0704191.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutkay, D.E., Han, D., Picioroaga, G. et al. Orthonormal dilations of Parseval wavelets. Math. Ann. 341, 483–515 (2008). https://doi.org/10.1007/s00208-007-0196-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0196-x

Mathematics Subject Classification (2000)

Navigation