Skip to main content
Log in

Derived McKay correspondence via pure-sheaf transforms

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In most cases where it has been shown to exist the derived McKay correspondence \({D(Y) \xrightarrow{\sim} D^G(\mathbb{C}^n)}\) can be written as a Fourier–Mukai transform which sends point sheaves of the crepant resolution Y to pure sheaves in \({D^G(\mathbb{C}^n)}\) . We give a sufficient condition for \({E \in D^G(Y \times \mathbb{C}^n)}\) to be the defining object of such a transform. We use it to construct the first example of the derived McKay correspondence for a non-projective crepant resolution of \({\mathbb{C}^3/G}\) . Along the way we extract more geometrical meaning out of the Intersection Theorem and learn to compute θ-stable families of G-constellations and their direct transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bezrukavnikov, R., Kaledin, D.: McKay equivalence for symplectic resolutions of singularities. Proc. Steklov Inst. Math. 246, 13–33 (2004) math.AG/0401002

    MathSciNet  Google Scholar 

  2. Bridgeland, T., King, A., Reid, M.: The McKay correspondence as an equivalence of derived categories. J. Am. Math. Soc. 14, 535–554 (2001) math.AG/9908027

    Article  MATH  MathSciNet  Google Scholar 

  3. Bridgeland, T., Macioca, A.: Fourier–Mukai transforms for K3 and elliptic fibrations. J. Algebr. Geom. 11(4), 629–657 (2002) math.AG/9908022

    MATH  Google Scholar 

  4. Bondal, A., Orlov, D.: Semi-orthogonal decompositions for algebraic varieties. Preprint math.AG/ 950612 (1995)

  5. Bridgeland, T.: Equivalence of triangulated categories and Fourier–Mukai transforms. Bull. Lond. Math. Soc. 31, 25–34 (1999) math.AG/9809114

    Article  MATH  MathSciNet  Google Scholar 

  6. Bridgeland, T.: Stability conditions on triangulated categories. Preprint math.AG/0504584, Ann. Math. (2002, to appear)

  7. Craw, A., Ishii, A.: Flops of G-Hilb and equivalences of derived category by variation of GIT quotient. Duke Math. J. 124(2), 259–307 (2004) math.AG/0211360

    Article  MATH  MathSciNet  Google Scholar 

  8. Craw, A., Maclagan, D., Thomas, R.R.: Moduli of McKay quiver representations I: the coherent component. Preprint (2005)

  9. Craw, A., Maclagan, D., Thomas, R.R.: Moduli of McKay quiver representations II: Grobner basis techniques. Preprint (2005)

  10. Craw, A., Reid, M.: How to calculate A-Hilb \({\mathbb{C}^3}\) . Seminaires et Congres 6, 129–154 (2002) math.AG/ 9909085

    MathSciNet  Google Scholar 

  11. Deligne, P.: Cohomologie a support propre et construction du foncteur f !. In: Hartshorne, R.: Residues and Duality. Springer, Heidelberg, pp. 404–421 (1966)

  12. Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique I: Le langage des schémas. Publications mathématiques de l’I.H.É.S. 4, 5–228 (1960)

    Article  Google Scholar 

  13. Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique III: Étude cohomologique des faisceaux cohérents. Première partie. Publications mathématiques de l’I H.É.S. 11, 5–167 (1961)

    Article  Google Scholar 

  14. Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique III: Étude cohomologique des faisceaux cohérents. Seconde partie. Publications mathématiques de l’I.H.É.S. 17, 5–91 (1963)

    Article  Google Scholar 

  15. Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas. Troisième partie. Publications mathématiques de l’I H.É.S. 28, 5–255 (1966)

    Article  Google Scholar 

  16. Gelfand, S.I., Manin, Yu.I.: Methods of Homological Algebra. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  17. Gonzales-Sprinberg, G., Verdier, J.-L.: Construction géométrique de la correspondance de McKay. Ann. Sci. ENS 16, 409–449 (1983)

    Google Scholar 

  18. Hartshorne, R.: Residues and Duality. Springer, Heidelberg (1966)

    MATH  Google Scholar 

  19. Huybrechts, D.: Fourier–Mukai Transforms in Algebraic Geometry. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  20. Ito, Y., Nakajima, H.: McKay correspondence and Hilbert schemes in dimension three. Topology 39(6), 1155–1191 (2000) math.AG/9803120

    Article  MATH  MathSciNet  Google Scholar 

  21. Kawamata, Y.: Log crepant birational maps and derived categories. J. Math. Sci. Univ. Tokyo 12(2), 211–231 (2005) math.AG/0311139

    MATH  MathSciNet  Google Scholar 

  22. King, A.: Moduli of representations of finite-dimensional algebras. Q. J. Math. Oxford 45, 515–530 (1994)

    Article  MATH  Google Scholar 

  23. Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal Embeddings I. Springer, Heidelberg (1973)

    MATH  Google Scholar 

  24. Kollár, J.: Flops. Nagoya Math. J. 113, 15–36 (1989)

    MATH  MathSciNet  Google Scholar 

  25. Kuznetsov, A.: Homological projective duality. Preprint math.AG/0507292 (2005)

  26. Kapranov, M., Vasserot, E.: Kleinian singularities, derived categories and hall algebras. Preprint math.AG/9812016 (1998)

  27. Logvinenko, T.: Families of G-constellations over resolutions of quotient singularities. Preprint math.AG/0305194 (2003)

  28. Logvinenko, T.: Families of G-Constellations parametrised by resolutions of quotient singularities. Ph.D. thesis, University of Bath (2004)

  29. Logvinenko, T.: Natural G-constellation families. Preprint math.AG/0601014 (2006)

  30. Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge(1986)

    MATH  Google Scholar 

  31. McKay, J.: Graphs, singularities and finite groups. Proc. Symp. Pure Math. 37, 183–186 (1980)

    MathSciNet  Google Scholar 

  32. Mukai, S.: Duality between D(X) and \({D(\hat{X})}\) with its application to Picard sheaves. Nagoya Math. J. 81, 153–175 (1981)

    MATH  MathSciNet  Google Scholar 

  33. Nagata, M.: Imbedding of an abstract variety in a complete variety. J. Math. Kyoto Univ. 2(1), (1962)

  34. Orlov, D.: Equivalences of derived categories and K3 surfaces. J. Math. Sci. (NY) 84(5), 1361–1381 (1997) math.AG/9606006

    Article  MATH  MathSciNet  Google Scholar 

  35. Reid, M.: Young person’s guide to canonical singularities. Proc. Symp. Pure Math. 46, 345–414 (1987)

    Google Scholar 

  36. Reid, M.: McKay correspondence. Preprint math.AG/9702016 (1997)

  37. Roberts, P.C.: Multiplicities and Chern Classes in Local Algebra. Cambridge University Press, Cambridge(1998)

    MATH  Google Scholar 

  38. Serre, J.P.: Local Algebra. Springer, Heidelberg (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Logvinenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logvinenko, T. Derived McKay correspondence via pure-sheaf transforms. Math. Ann. 341, 137–167 (2008). https://doi.org/10.1007/s00208-007-0186-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0186-z

Mathematics Subject Classification (2000)

Navigation