Skip to main content
Log in

Spectral flexibility of symplectic manifolds T 2 × M

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider Riemannian metrics compatible with the natural symplectic structure on T 2 × M, where T 2 is a symplectic 2-torus and M is a closed symplectic manifold. To each such metric we attach the corresponding Laplacian and consider its first positive eigenvalue λ1. We show that λ1 can be made arbitrarily large by deforming the metric structure, keeping the symplectic structure fixed. The conjecture is that the same is true for any symplectic manifold of dimension  ≥ 4. We reduce the general conjecture to a purely symplectic question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev spaces. In: Pure and Applied Mathematics, vol. 65. Academic [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1975)

  2. Adams R., Aronszajn N. and Smith K.T. (1967). Theory of Bessel potentials. II. Ann. Inst. Fourier (Grenoble) 17: 1–135

    MATH  MathSciNet  Google Scholar 

  3. Adams R., Aronszajn N. and Hanna M.S. (1969). Theory of Bessel potentials. Part III. Potentials on regular manifolds. Ann. Inst. Fourier (Grenoble) 19: 279–338

    MATH  MathSciNet  Google Scholar 

  4. Aronszajn N., Mulla F. and Szeptycki P. (1963). On spaces of potentials connected with L p classes. Ann. Inst. Fourier (Grenoble) 13: 211–306

    MATH  MathSciNet  Google Scholar 

  5. Aronszajn N. and Smith K.T. (1961). Theory of Bessel potentials. I. Ann. Inst. Fourier (Grenoble) 11: 385–475

    MATH  MathSciNet  Google Scholar 

  6. Bérard-Bergery L. and Bourguignon J.-P. (1982). Laplacians and Riemannian submersions with totally geodesic fibres. Illinois J. Math. 26: 181–200

    MATH  MathSciNet  Google Scholar 

  7. Bourguignon J.-P., Li P. and Yau S.T. (1994). Upper bound for the first eigenvalue of algebraic submanifolds. Comment. Math. Helv. 69: 199–207

    Article  MATH  MathSciNet  Google Scholar 

  8. Calderón, A.P.: Lebesgue spaces of differentiable functions and distributions. In: Proceedings of the Symposium on Pure Mathematics, vol. IV, pp. 33–49. American Mathematical Society, Providence (1961)

  9. Colbois B. and Dodziuk J. (1994). Riemannian metrics with large λ1. Proc. Am. Math. Soc. 122: 905–906

    Article  MATH  MathSciNet  Google Scholar 

  10. Demailly, J.-P.: L 2 vanishing theorems for positive line bundles and adjunction theory. In: Transcendental methods in algebraic geometry (Cetraro, 1994). Lecture Notes in Mathematics, vol. 1646, pp. 1–97. Springer, Berlin (1996)

  11. Edmunds D.E. and Triebel H. (1996). Function Spaces, Entropy Numbers, Differential Operators, Cambridge Tracts in Mathematics, vol. 120. Cambridge University Press, Cambridge

    Google Scholar 

  12. El Soufi, A., Ilias, S.: Le volume conforme et ses applications d’après Li et Yau. Séminaire de Théorie Spectrale et Géométrie, Année 1983–1984, pp. VII.1–VII.15. Univ. Grenoble I, Saint (1984)

  13. Friedlander L. and Nadirashvili N. (1999). A differential invariant related to the first eigenvalue of the Laplacian. Int. Math. Res. Notices 17: 939–952

    Article  MathSciNet  Google Scholar 

  14. Hersch J. (1970). Quatre propriétés isopérimétriques de membranes sphériques homogènes. C. R. Acad. Sci. Paris Sér. A-B 270: A1645–A1648

    MathSciNet  Google Scholar 

  15. McDuff D. and Salamon D. (1995). Introduction to Symplectic Topology, Oxford Mathematical Monographs. Clarendon/Oxford University Press, New York

    Google Scholar 

  16. Polterovich L. (1998). Symplectic aspects of the first eigenvalue. J. Reine Angew. Math. 502: 1–17

    MATH  MathSciNet  Google Scholar 

  17. Rothschild L.P. and Stein E.M. (1976). Hypoelliptic differential operators and nilpotent groups. Acta Math. 137: 247–320

    Article  MathSciNet  Google Scholar 

  18. Stein E.M. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series. Princeton University Press, Princeton

    Google Scholar 

  19. Triebel H. (1983). Theory of Function Spaces, Monographs in Mathematics, vol. 78. Birkhäuser, Basel

    Google Scholar 

  20. Triebel H. (1992). Theory of Function Spaces. II, Monographs in Mathematics, vol. 84. Birkhäuser, Basel

    Google Scholar 

  21. Yang P.C. and Yau S.T. (1980). Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 7(4): 55–63

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Mangoubi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangoubi, D. Spectral flexibility of symplectic manifolds T 2 × M . Math. Ann. 341, 1–13 (2008). https://doi.org/10.1007/s00208-007-0178-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0178-z

Mathematics Subject Classification (2000)

Navigation