Skip to main content
Log in

Non-singular solutions to the normalized Ricci flow equation

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we study non-singular solutions to Ricci flow on a closed manifold of dimension at least 4. Amongst other things we prove that, if M is a closed 4-manifold on which the normalized Ricci flow exists for all time t > 0 with uniformly bounded sectional curvature, then the Euler characteristic \(\chi (M)\ge 0\) . Moreover, the 4-manifold satisfies one of the followings

  1. (i)

    M is a shrinking Ricci soliton;

  2. (ii)

    M admits a positive rank F-structure;

  3. (iii)

    the Hitchin–Thorpe type inequality holds

$$2\chi (M)\ge 3|\tau(M)|$$

where \(\chi (M)\) (resp. \(\tau(M)\)) is the Euler characteristic (resp. signature) of M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson M.T. (1993). Degeneration of metrics with bounded curvature and applications to critical metrics of Riemannian functionals. Proc. Symp. Pure Math. 54: 53–79

    Google Scholar 

  2. Aubin T. (1982). Nonlinear Analysis on Manifolds, Monge-Ampére Equations. Springer, New York

    MATH  Google Scholar 

  3. Besse A.L. (1987). Einstein manifolds, Ergebnisse der Math. Springer, Berlin

    Google Scholar 

  4. Cheeger J. and Gromov M. (1986). Collapsing Riemannian manifolds while keeping their curvature bounded I. J. Diff. Geom. 23: 309–364

    MATH  MathSciNet  Google Scholar 

  5. Cheeger J. and Gromov M. (1990). Collapsing Riemannian manifolds while keeping their curvature bounded II. J. Diff. Geom. 32: 269–298

    MATH  MathSciNet  Google Scholar 

  6. Cheeger, J., Gromov, M.: On the characteristic numbers of complete manifolds of bounded curvature and finite volume. In: Rauch, H.E. (ed.) Memorial, vol. I, pp. 115–154. Springer, Berlin (1985)

  7. Cheeger J., Gromov M. and Taylor M. (1982). Finite propagation speed, kernal estimates for functions of the Laplace operatro, and the geometry of complete Riemannian manifolds. J. Diff. Geom. 17: 15–53

    MATH  MathSciNet  Google Scholar 

  8. Cao H.D. and Zhu X.P. (2006). A complete proof of the Poincaré and geometrization conjectures-application of the Hamilton–Perelman theory of the Ricci flow. Asian J. Math. 10: 165–492

    MATH  MathSciNet  Google Scholar 

  9. Fang F. and Zhang Y.G. (2007). Perelman’s λ-functional and the Seiberg–Witten equations. Front. Math. China 2: 191–210

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernández-López, M., García-Río, E.: A remark on compact Ricci solitons. preprint

  11. Hamilton R. (1982). Three-manifolds with positive Ricci curvature. J. Diff. Geom. 17: 255–306

    MATH  MathSciNet  Google Scholar 

  12. Hamilton R. (1995). A compactness property for solutions of the Ricci flow. Am. J. Math. 117: 545–574

    Article  MATH  MathSciNet  Google Scholar 

  13. Hamilton R. (1997). Non-singular solutions of the Ricci flow on three-manifolds. Commun. Anal. Geom. 5: 1–92

    MATH  MathSciNet  Google Scholar 

  14. Ivey T. (1993). Ricci solitons on compact three-manifolds. Diff. Geom. Appl. 3: 301–307

    Article  MATH  MathSciNet  Google Scholar 

  15. Kleiner, B., Lott, J.: Notes on Perelman’s Papers, at www.math.lsa.umich.edu/research /ricciflow

  16. LeBrun, C.: Four-Dimensional Einstein Manifolds and Beyond. in Surveys in Differential Geometry, vol. VI: Essays on Einstein Manifolds, pp. 247–285

  17. LeBrun C. (2001). Ricci curvature, minimal volumes and Seiberg–Witten theory. Invent. Math. 145: 279–316

    Article  MATH  MathSciNet  Google Scholar 

  18. Feldman, M., Ilmanen, T., Ni, L.: Entropy and reduced distance for Ricci expanders. J. Geom. Anal. 15 (2005)

  19. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math. DG/0211159

  20. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109

  21. Rong X. (1995). Rationality of geometric signatures of complete 4-manifolds. Invent. Math. 120(1): 513–554

    Article  MATH  MathSciNet  Google Scholar 

  22. Rothaus O.S. (1981). Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Func. Anal. 42: 110–120

    Article  MATH  MathSciNet  Google Scholar 

  23. Taubes C.H. (1995). More constraints on symplectic forms from Seiberg–Witten invariants. Math. Res. Lett. 2: 9–13

    MATH  MathSciNet  Google Scholar 

  24. Schoen, R., Yau, S.T.: Lectures on differential geometry. In: Conference Proceedings and Lecture Notes in Geometry and Topology, 1, International Press Publications, 1994

  25. Zhang Z.L. (2007). On the finiteness of the fundamental group of a compact shrinking Ricci soliton. Colloq. Math. 107: 297–299

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuquan Fang.

Additional information

The first author was supported by a NSF Grant of China and the Capital Normal University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, F., Zhang, Y. & Zhang, Z. Non-singular solutions to the normalized Ricci flow equation. Math. Ann. 340, 647–674 (2008). https://doi.org/10.1007/s00208-007-0164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0164-5

Keywords

Navigation