Skip to main content
Log in

On typical degenerate convex surfaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Various properties are given concerning geodesics on, and distance functions from points in, typical degenerate convex surfaces; i.e., surfaces obtained by gluing together two isometric copies of typical (in the sense of Baire category) convex bodies, by identifying the corresponding points of their boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexandrov A.D. (1955). Die innere Geometrie der konvexen Flächen. Academie-Verlag, Berlin

    Google Scholar 

  2. Birkhoff, G.D.: Dynamical systems. Amer. Math. Soc., Providence, R.I. (1958), rev. edn. 1966

  3. Busemann H. (1958). Convex Surfaces. Interscience Publishers, New York

    MATH  Google Scholar 

  4. Burago Y., Gromov M. and Perelman G. (1992). A. D. Alexandrov spaces with curvature bounded below. Russ. Math. Surv. 47: 1–58

    Article  MATH  MathSciNet  Google Scholar 

  5. Croft H.T., Falconer K.J. and Guy R.K. (1991). Unsolved Problems in Geometry. Springer, New York

    MATH  Google Scholar 

  6. Gluck H., Singer, D.: Scattering of geodesic fields I and II. Ann. Math. 108, 347–372 (1978), and 110, 205–225 (1979)

    Google Scholar 

  7. Gruber P. (1977). Die meisten konvexen Körper sind glatt, aber nicht zu glatt. Math. Ann. 229: 259–266

    Article  MATH  MathSciNet  Google Scholar 

  8. Gruber P. (1988). Minimal ellipsoids and their duals. Rend. Circ. Mat. Palermo 37: 35–64

    Article  MATH  MathSciNet  Google Scholar 

  9. Gruber P. (1990). Convex billiards. Geom. Dedicata 33: 205–226

    Article  MATH  MathSciNet  Google Scholar 

  10. Gruber P. (1991). A typical convex surface contains no closed geodesic. J. Reine Angew. Math. 416: 195–205

    MATH  MathSciNet  Google Scholar 

  11. Gruber, P.: Baire categories in convexity. In: Gruber, P., Wills, J. (eds.) Handbook of Convex Geometry vol. B, 1327–1346. North-Holland, Amsterdam (1993)

  12. Hebda J. (1995). Cut loci of submanifolds in space forms and in the geometries of Möbius and Lie. Geom. Dedicata 55: 75–93

    Article  MATH  MathSciNet  Google Scholar 

  13. Itoh, J., Rouyer, J., Vîlcu, C.: Antipodal convex hypersurfaces (to appear)

  14. Itoh J. and Vîlcu C. (2004). Farthest points and cut loci on some degenerate convex surfaces. J. Geom. 80: 106–120

    Article  MATH  MathSciNet  Google Scholar 

  15. Itoh, J., Vîlcu, C.: What do cylinders look like? (to appear)

  16. Klee V.L. (1959). Some new results on smoothness and rotundity in normed linear spaces. Math. Ann. 139: 51–63

    Article  MATH  MathSciNet  Google Scholar 

  17. Kobayashi S. (1989). On conjugate and cut loci. Global differential geometry. MAA Stud. Math. 27: 140–169

    Google Scholar 

  18. Otsu Y. and Shioya T. (1994). The Riemannian structure of Alexandrov spaces. J. Differ. Geom. 39: 629–658

    MATH  MathSciNet  Google Scholar 

  19. Rouyer J. (2003). On antipodes on a manifold endowed with a generic Riemannian metric. Pacific J. Math. 212: 187–200

    MATH  MathSciNet  Google Scholar 

  20. Sakai, T.: Riemannian Geometry. Amer. Math. Soc., Providence, R.I. (1996)

  21. Sen′kin E.P. (1972). Rigidity of convex hypersurfaces (Russian). Ukrain. Geometr. Sb. 12: 131–152

    MATH  MathSciNet  Google Scholar 

  22. Shiohama, K., Tanaka, M.: Cut loci and distance spheres on Alexandrov surfaces. Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sém. Congr., vol. 1, Soc. Math. France, pp. 531–559 (1996)

  23. Vîlcu C. (2000). On two conjectures of Steinhaus. Geom. Dedicata 79: 267–275

    Article  MATH  MathSciNet  Google Scholar 

  24. Vîlcu C. (2006). Properties of the farthest point mapping on convex surfaces. Rev. Roum. Math. Pures Appl. 51: 125–134

    MATH  Google Scholar 

  25. Vîlcu C. and Zamfirescu T. (2006). Symmetry and the farthest point mapping on convex surfaces. Adv. Geom. 6: 345–353

    Article  Google Scholar 

  26. Vîlcu C. and Zamfirescu T. (2007). Multiple farthest points on Alexandrov surfaces. Adv. Geom. 7: 83–100

    Article  MATH  MathSciNet  Google Scholar 

  27. Zamfirescu T. (1980). Nonexistence of curvature in most points of most convex surfaces. Math. Ann. 252: 217–219

    Article  MATH  MathSciNet  Google Scholar 

  28. Zamfirescu T. (1982). Inscribed and circumscribed circles to convex curves. Proc. Amer. Math. Soc. 80: 455–457

    Article  MathSciNet  Google Scholar 

  29. Zamfirescu T. (1982). Many endpoints and few interior points of geodesics. Invent. Math. 69: 253–257

    Article  MATH  MathSciNet  Google Scholar 

  30. Zamfirescu T. (1984). Points on infinitely many normals to convex surfaces. J. Reine Angew. Math. 350: 183–187

    MATH  MathSciNet  Google Scholar 

  31. Zamfirescu T. (1991). Baire categories in convexity. Atti. Sem. Mat. Fis. Univ. Modena 39: 139–164

    MATH  MathSciNet  Google Scholar 

  32. Zamfirescu T. (1992). Long geodesics on convex surfaces. Math. Ann. 293: 109–114

    Article  MATH  MathSciNet  Google Scholar 

  33. Zamfirescu T. (1995). On some questions about convex surfaces. Math. Nach. 172: 313–324

    Article  MATH  MathSciNet  Google Scholar 

  34. Zamfirescu T. (1995). Points joined by three shortest paths on convex surfaces. Proc. Amer. Math. Soc. 123: 3513–3518

    Article  MATH  MathSciNet  Google Scholar 

  35. Zamfirescu T. (1995). Géodésiques et lieux de coupure sur les surfaces convexes typiques. An. Şt. Univ. Ovidius Constanţa 3: 167–173

    MATH  MathSciNet  Google Scholar 

  36. Zamfirescu T. (1997). Farthest points on convex surfaces. Math. Z. 226: 623–630

    Article  MATH  MathSciNet  Google Scholar 

  37. Zamfirescu T. (1998). Extreme points of the distance function on convex surfaces. Trans. Amer. Math. Soc. 350: 1395–1406

    Article  MATH  MathSciNet  Google Scholar 

  38. Zamfirescu T. (2000). Dense ambiguous loci and residual cut loci. Suppl. Rend. Circ. Mat. Palermo, II. Ser. 65: 203–208

    MathSciNet  Google Scholar 

  39. Zamfirescu T. (2004). On the cut locus in Alexandrov spaces and applications to convex surfaces. Pacific J. Math. 217: 375–386

    Article  MATH  MathSciNet  Google Scholar 

  40. Zamfirescu T. (2006). On the number of shortest paths between points on manifolds. Suppl. Rend. Circ. Mat. Palermo. II. Ser. 77: 643–647

    MathSciNet  Google Scholar 

  41. Zemlyakov, A.N., Katok, A.B.: Topological transitivity of billiards in polygons. Mat. Zametki 18, 291–300 (1975) (Math. Notes 18, 760–764 (1975))

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costin Vîlcu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vîlcu, C. On typical degenerate convex surfaces. Math. Ann. 340, 543–567 (2008). https://doi.org/10.1007/s00208-007-0159-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0159-2

Mathematics Subject Classification (2000)

Navigation