Skip to main content
Log in

Proving the triviality of rational points on Atkin–Lehner quotients of Shimura curves

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we give a method for studying global rational points on certain quotients of Shimura curves by Atkin–Lehner involutions. We obtain explicit conditions on such quotients for rational points to be “trivial” (coming from CM points only) and exhibit an explicit infinite family of such quotients satisfying these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich D. (1996). A linear lower bound on the gonality of modular curves. Int. Math. Res. Not. 20: 1005–1011

    Article  MathSciNet  Google Scholar 

  2. Alsina, M., Bayer, P.: Quaternion orders, quadratic forms, and Shimura curves. CRM Monograph Series, 22. AMS, Providence, RI, pp. xvi+196 (2004)

  3. Atkin, A.O.L.: Table of supersingular invariants. In: Modular functions of one variable, IV (Proceedings Internat. Summer School, University Antwerp, Antwerp, 1972). Lecture Notes in Math., vol. 476, pp. 143–144. Springer, Berlin (1975)

  4. Bollobás B. (1998). Modern graph theory, GTM n. 184. Springer, New York

    Google Scholar 

  5. Bruin N., Flynn E.V., González J. and Rotger V. (2006). On finiteness conjecture for modular quaternion algebras. Math. Proc. Camb. Phil. Soc. 141(3): 383–408

    Article  Google Scholar 

  6. Clark, P.: Local and global points on moduli spaces of potentially quaternionic abelian surfaces. Ph.D. Thesis (2003)

  7. Cornut, Ch., Vatsal, V.: Nontriviality of Rankin–Selberg L-functions and CM points. Proceedings of a Durham conference, Preprint (2004)

  8. Davidoff, G., Sarnak, P., Valette, A.: Elementary number theory, group theory, and Ramanujan graphs. LMS Student Texts 55. CUP, Cambridge (2003)

  9. Diamond, F., Im, J.: Modular forms and modular curves. In: Seminar on Fermat’s last theorem (Toronto, 1993–1994), CMS Conf. Proc. no. 17, Am. Math. Soc., Providence, RI (1995)

  10. Edixhoven, B.: Appendix to a rigid analytic Gross–Zagier formula and arithmetic application, by M. Bertolini and H. Darmon. Ann. Math. 146, pp. 111–147 (1997)

  11. Edixhoven B. (1998). On Néron models, divisors and modular curves. J. Ramanujan Math. Soc. 13(2): 157–194

    MATH  MathSciNet  Google Scholar 

  12. Emerton M. (2002). Supersingular elliptic curves, theta series and weight two modular forms. J. Am. Math. Soc. 15(3): 671–714

    Article  MATH  MathSciNet  Google Scholar 

  13. Gross, B.: Heights and the special values of L-series, Canadian Math. Soc. Conference Proceedings 7, Am. Math. Soc., Providence, pp. 115–187 (1987)

  14. Grothendieck, A.: Éléments de géométrie algébrique, IV. Étude locale des schémas et des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math. No. 32, p. 361 (1967)

  15. Grothendieck, A.: Séminaire de Géométrie algébrique 7, I, Exposé IX, LNM 288, pp. 313–523. Springer, Heidelberg (1972)

  16. Jacquet, H., Langlands, R.P.: Automorphic forms on GL2. Lecture Note in Math. no. 114. Springer, Heidelberg (1970)

  17. Jordan B. and Livné R. (1985). Local Diophantine properties of Shimura curves. Math. Ann. 270(2): 235–248

    Article  MATH  MathSciNet  Google Scholar 

  18. Kato, K.: p-adic Hodge theory and values of Zeta functions of modular forms. In: Cohomologies p-adiques et applications arithmétiques. Astérisque n. 295, ix, pp. 117–290 (2004)

  19. Kolyvagin V.A. and Logachev Yu, D. (1990). Finiteness of the Shafarevich–Tate group and the group of rational points for some modular abelian varieties. Leningr. Math. J. 1(5): 1229–1253

    MATH  MathSciNet  Google Scholar 

  20. Lario, J.-C.: Tables available at http://www-ma2.upc.es/~lario/ellipticm.htm

  21. Ogg, A.P.: Mauvaise réduction des courbes de Shimura. In: Séminaire de théorie des nombres, Paris 1983–1984, pp. 199–217, Progr. Math., 59, Birkhäuser Boston, Boston, MA (1985)

  22. Parent P. (2005). Towards the triviality of \(X_0^+ (p^r )(\mathbb {Q} )\) for r > 1Compositio Math. 141(3): 561–572

    Article  MATH  MathSciNet  Google Scholar 

  23. Raynaud M. (1991). Jacobiennes des courbes modulaires et opérateurs de Hecke. Astérisque 196(197): 9–25

    MathSciNet  Google Scholar 

  24. Ribet K. (1990). On modular representations of \({\rm Gal} (\overline{\mathbb {Q}} /\mathbb {Q})\) arising from modular formsInvent. Math. 100(2): 431–476

    Article  MATH  MathSciNet  Google Scholar 

  25. Rotger V. (2004). Modular Shimura varieties and forgetful maps. Trans. Am. Math. Soc. 356(4): 1535–1550

    Article  MATH  MathSciNet  Google Scholar 

  26. Rotger, V.: Which quaternion algebra act on a modular abelian variety? Preprint (2006)

  27. Rotger V., Skorobogatov A. and Yafaev A. (2005). Failure of the Hasse principle for Atkin–Lehner quotients of Shimura curves over \({\mathbb{Q}}\) Moscow Math. J. 5(2): 463–476

    MATH  MathSciNet  Google Scholar 

  28. Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Kanô Memorial Lectures, No. 1. Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten Publishers, Tokyo, Princeton University Press, Princeton, NJ, pp. xiv+267 (1971)

  29. Skorobogatov, A.: The Brauer–Manin obstruction for Shimura curves, IMRN (to appear)

  30. Skorobogatov A. and Siksek S. (2003). On a Shimura curve that is a counterexample to the Hasse principle. Bull. Ldn Math. Soc. 35(3): 409–414

    Article  MATH  MathSciNet  Google Scholar 

  31. Skorobogatov A. and Yafaev A. (2004). Descent on certain Shimura curves. Israel J. Math. 140: 319–332

    MATH  MathSciNet  Google Scholar 

  32. Vatsal, V.: Special value formulae for Rankin L-functions. Heegner points and Rankin L-series, Math. Sci. Res. Inst. Publ., vol. 49, pp. 165–190, Cambridge University Press, Cambridge (2004)

  33. Zhang Sh.-W. (2001). Gross–Zagier formula for GL2. Asian J. Math. 5: 183–290

    MATH  MathSciNet  Google Scholar 

  34. Zhang, Sh.-W.: Gross–Zagier formula for GL2 II. In: Heegner points and Rankin L-series. Math. Sci. Res. Inst. Publ., vol. 49, pp. 191–214. Cambridge University Press, Cambridge (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Parent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parent, P., Yafaev, A. Proving the triviality of rational points on Atkin–Lehner quotients of Shimura curves. Math. Ann. 339, 915–935 (2007). https://doi.org/10.1007/s00208-007-0136-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0136-9

Keywords

Navigation