Skip to main content
Log in

\({\mathcal{C}}_{0}\) (X)-algebras, stability and strongly self-absorbing \({\mathcal{C}}^{*}\) -algebras

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study permanence properties of the classes of stable and so-called \({\mathcal{D}}\)-stable \({\mathcal{C}}^{*}\)-algebras, respectively. More precisely, we show that a \({\mathcal{C}}_{0}\) (X)-algebra A is stable if all its fibres are, provided that the underlying compact metrizable space X has finite covering dimension or that the Cuntz semigroup of A is almost unperforated (a condition which is automatically satisfied for \({\mathcal{C}}^{*}\)-algebras absorbing the Jiang–Su algebra \({\mathcal{Z}}\) tensorially). Furthermore, we prove that if \({\mathcal{D}}\) is a K 1-injective strongly self-absorbing \({\mathcal{C}}^{*}\)-algebra, then A absorbs \({\mathcal{D}}\) tensorially if and only if all its fibres do, again provided that X is finite-dimensional. This latter statement generalizes results of Blanchard and Kirchberg. We also show that the condition on the dimension of X cannot be dropped. Along the way, we obtain a useful characterization of when a \({\mathcal{C}}^{*}\)-algebra with weakly unperforated Cuntz semigroup is stable, which allows us to show that stability passes to extensions of \({\mathcal{Z}}\)-absorbing \({\mathcal{C}}^{*}\) -algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blackadar B. (2006). Operator Algebras, vol. 122, Encyclopaedia of Mathematical Sciences. Subseries: Operator Algebras and Non-commutative Geometry.no. III. Springer, Berlin

    Google Scholar 

  2. Blackadar B. and Handelman D. (1982). Dimension functions and traces on \({\mathcal{C}}^*\) -algebras. J. Funct. Anal. 45: 297–340

    Article  MATH  MathSciNet  Google Scholar 

  3. Blackadar B., Kumjian A. and Rørdam M. (1992). Approximately central matrix units and the structure of non-commutative tori. K-theory 6: 267–284

    Article  MATH  MathSciNet  Google Scholar 

  4. Blanchard E. (2000). A few remarks on exact \({\mathcal{C}}\) (X)-algebras. Rev. Roum. Math. Pures Appl. 45: 565–576

    MATH  MathSciNet  Google Scholar 

  5. Blanchard E. and Kirchberg E. (2004). \({\mathcal{C}}^*\) -bundles. J. Oper. Theory 52(2): 385–420

    MATH  MathSciNet  Google Scholar 

  6. Blanchard E. and Kirchberg E. (2004). Non simple purely infinite \({\mathcal{C}}^*\) -algebras: the Hausdorff case. J. Funct. Anal. 207: 461–513

    Article  MATH  MathSciNet  Google Scholar 

  7. Burgstaller, B., Ng, P.W.: Stability of a σ P -unital continuous field algebra (2006)

  8. Cuntz J. (1978). Dimension functions on simple \({\mathcal{C}}^*\) -algebras. Math. Ann. 233: 145–153

    Article  MATH  MathSciNet  Google Scholar 

  9. Dădărlat, M.: Continuous fields of \({\mathcal{C}}^{*}\) -algebras over finite-dimensional spaces. Preprint (2006)

  10. Dădărlat, M.: Fibrewise KK-equivalence of continuous fields of \({\mathcal{C}}^{*}\) -algebras. Preprint, Math. Archive math.OA/0611408 (2006)

  11. Dădărlat, M., Winter, W.: Trivialization of \({\mathcal{C}}\) (X)-algebras with strongly self-absorbing fibres. in preparation (2007). Preprint Math. Archive math. OA/0705.1497 (2007)

  12. Gong G., Jiang X. and Su H. (2000). \({\mathcal{Z}}\) -stability for unital simple \({\mathcal{C}}^*\) -algebras. Can. Math. Bull. 43(4): 418–426

    MATH  MathSciNet  Google Scholar 

  13. Goodearl K.R. and Handelman D. (1976). Rank functions and K 0 of regular rings. J. Pure Appl. Algebra 7: 195–216

    Article  MATH  MathSciNet  Google Scholar 

  14. Haagerup, U.: Every quasi-trace on an exact \({\mathcal{C}}^*\) -algebra is a trace. Preprint (1991)

  15. Hirshberg, I., Winter, W.: Rokhlin actions and self-absorbing \({\mathcal{C}}^{*}\) -algebras. Preprint, Math. Archive math.OA/0505356 (2005)

  16. Hjelmborg J. and Rørdam M. (1998). On stability of \({\mathcal{C}}^*\) -algebras. J. Funct. Anal. 155(1): 153–170

    Article  MATH  MathSciNet  Google Scholar 

  17. Hurewicz W. and Wallmann H. (1941). Dimension Theory. Princeton University Press, Princeton

    Google Scholar 

  18. Husemoller, D.: Fibre Bundles, 3rd edn., Graduate Texts in Mathematics, no. 20. Springer, New York (1994)

  19. Jiang X. and Su H. (1999). On a simple unital projectionless \({\mathcal{C}}^*\) -algebra. Am. J. Math. 121(2): 359–413

    Article  MATH  MathSciNet  Google Scholar 

  20. Kasparov G.G. (1988). Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91: 147–201

    Article  MATH  MathSciNet  Google Scholar 

  21. Kirchberg E. (2006). Central sequences in \({\mathcal{C}}^*\) -algebras and strongly purely infinite \({\mathcal{C}}^*\) -algebras. Abel Symposia 1: 175–231

    Article  MathSciNet  Google Scholar 

  22. Kirchberg, E.: Permanence properties of and strongly purely infinite \({\mathcal{C}}^*\) -algebras. Preprint (2003)

  23. Kirchberg, E.: The classification of Purely Infinite \({\mathcal{C}}^*\) -algebras using Kasparov’s Theory. (2007 in preparation)

  24. Kirchberg E. and Phillips N.C. (2000). Embedding of exact \({\mathcal{C}}^*\) -algebras into \({{\mathcal{O}}}_2\). J. Reine Angew. Math. 525: 17–53

    MATH  MathSciNet  Google Scholar 

  25. Kirchberg E. and Rørdam M. (2000). Non-simple purely infinite \({\mathcal{C}}^*\) -algebras. Am. J. Math. 122: 637–666

    Article  MATH  Google Scholar 

  26. Phillips N.C. (2000). A classification theorem for nuclear purely infinite simple \({\mathcal{C}}^*\) -algebras. Doc. Math. 5: 49–114

    MATH  MathSciNet  Google Scholar 

  27. Rørdam M. (1991). On the structure of simple \({\mathcal{C}}^*\) -algebras tensored with a UHF-algebra. J. Funct. Anal. 100: 1–17

    Article  MATH  MathSciNet  Google Scholar 

  28. Rørdam M. (1992). On the structure of simple \({\mathcal{C}}^*\) -algebras tensored with a UHF-algebra, II. J. Funct. Anal. 107: 255–269

    Article  MATH  MathSciNet  Google Scholar 

  29. Rørdam M. (1997). Stability of \({\mathcal{C}}^*\) -algebras is not a stable property. Doc. Math. 2: 375–386

    MATH  MathSciNet  Google Scholar 

  30. Rørdam, M.: Classification of nuclear, simple \({\mathcal{C}}^*\) -algebras. Classification of Nuclear \({\mathcal{C}}^*\) -Algebras. Entropy in Operator Algebras (J. Cuntz and V. Jones, eds.), vol. 126, Encyclopaedia of Mathematical Sciences. Subseries: Operator Algebras and Non-commutative Geometry, no. VII, Springer, Berlin, Heidelberg, pp. 1–145 (2001)

  31. Rørdam M. (2001). Extensions of stable \({\mathcal{C}}^*\) -algebras. Doc. Math. 6: 241–246

    MathSciNet  Google Scholar 

  32. Rørdam M. (2003). A simple \({\mathcal{C}}^*\) -algebra with a finite and an infinite projection. Acta Math. 191: 109–142

    Article  MATH  MathSciNet  Google Scholar 

  33. Rørdam, M.: Stable \({\mathcal{C}}^*\) -algebras. Advanced Studies in Pure Mathematics 38 “Operator Algebras and Applications”. Math. Soc. of Japan, Tokyo, pp. 177–199 (2004)

  34. Rørdam M. (2004). The stable and the real rank of \({\mathcal{Z}}\) -absorbing C*-algebras. Int. J. Math. 15(10): 1065–1084

    Article  Google Scholar 

  35. Toms A. and Winter W. (2007). Strongly self-absorbing C*-algebras. Trans. Amer. Math. Soc. 359: 3999–4029

    MATH  MathSciNet  Google Scholar 

  36. Toms, A., Winter, W.: \({\mathcal{Z}}\) -stable ASH \({\mathcal{C}}^*\) -algebras. Preprint, Math. Archive math.OA/0508218, to appear in Can. J. Math. (2005)

  37. Toms, A., Winter, W.: The Elliott conjecture for Villadsen algebras of the first type. Preprint, Math. Archive math.OA/0611059 (2006)

  38. Winter W. (2006). On the classification of simple \({\mathcal{Z}}\) -stable \({\mathcal{C}}^*\) -algebras with real rank zero and finite decomposition rank. J. Lond. Math. Soc. 74: 167–183

    Article  MATH  MathSciNet  Google Scholar 

  39. Winter W. (2006). Simple \({\mathcal{C}}^*\) -algebras with locally finite decomposition rank. J. Funct. Anal. 243: 394–425

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Winter.

Additional information

Research supported by: Deutsche Forschungsgemeinschaft (through the SFB 478), by the EU-Network Quantum Spaces - Noncommutative Geometry (Contract No. HPRN-CT-2002-00280), and by the Center for Advanced Studies in Mathematics at Ben-Gurion University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirshberg, I., Rørdam, M. & Winter, W. \({\mathcal{C}}_{0}\) (X)-algebras, stability and strongly self-absorbing \({\mathcal{C}}^{*}\) -algebras. Math. Ann. 339, 695–732 (2007). https://doi.org/10.1007/s00208-007-0129-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0129-8

Mathematics Subject Classification (2000)

Navigation