Skip to main content
Log in

Comparing the Bergman and Szegö projections on domains with subelliptic boundary Laplacian

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that the difference between the Bergman and Szegö projections on a bounded, pseudoconvex domain (with C boundary) is smoothing whenever the boundary Laplacian is subelliptic. An equivalent statement is that the Bergman projection can be represented as a composition of the Szegö and harmonic Bergman projections (along with the restriction and Poisson extension operators) modulo an error that is smoothing. We give several applications to the study of optimal mapping properties for these projections and their difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell S. (1992). The Cauchy Transform, Potential Theory and Conformal Mapping. CRC, Boca Raton

    Google Scholar 

  2. Bergh J. and Löfström J. (1976). Interpolation Spaces. Springer, Berlin

    MATH  Google Scholar 

  3. Bonami A. and Charpentier P. (1990). Comparing the Bergman and the Szegö projections. Math. Z. 204: 225–233

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonami A. and Lohoué N. (1982). Projecteurs de Bergman et Szegö pour une classe de domaines faiblement pseudo-convexes et estimations L p. Compos. Math. 46: 159–226

    MATH  Google Scholar 

  5. Boutetde Monvel L. (1971). Boundary problems for pseudo-differential operators. Acta Math. 126: 11–51

    Article  MathSciNet  Google Scholar 

  6. Boutetde Monvel L. and Sjöstrand J. (1976). Sur la singularité des noyaux de Bergman et de Szegö. Société Mathématique de France, Astérisque 34(35): 123–164

    Google Scholar 

  7. Chang D.-C. and Grellier S. (1992). Régularité de la projection de Szegö dans les domaines découplés de type fini de Cn. C.R. Acad. Sci. Paris Sér. I 315: 1365–1370

    MATH  MathSciNet  Google Scholar 

  8. Chang D.-C., Nagel A. and Stein E.M. (1992). Estimates for the \({\bar\partial}\) -Neumann problem in pseudoconvex domains of finite type in C2. Acta Math. 169: 153–228

    Article  MATH  MathSciNet  Google Scholar 

  9. Charpentier P. and Dupain Y. (2006). Geometry of pseudo-convex domains of finite type with locally diagonalizable Levi form and Bergman kernel. J. Math. Pures Appl. 85: 71–118

    MATH  MathSciNet  Google Scholar 

  10. Charpentier P. and Dupain Y. (2006). Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form. Publ. Mat. 50: 413–446

    MATH  MathSciNet  Google Scholar 

  11. Chen, S.-C., Shaw, M.-C. (2001) partial differential equations in several complex variables. In: Studies in Advanced Mathematics, vol. 19. AMS/International Press, Providence

  12. Cho S. (2003). Boundary behavior of the Bergman kernel function on pseudoconvex domains with comparable Levi form. J. Math. Anal. Appl. 283: 386–397

    Article  MATH  MathSciNet  Google Scholar 

  13. Cumenge A. (1990). Comparaison des projecteurs de Bergman et Szegö et applications. Ark. Mat. 28: 23–47

    Article  MATH  MathSciNet  Google Scholar 

  14. Fefferman C. and Kohn J.J. (1988). Hölder estimates on domains of complex dimension two and on three dimensional CR manifolds. Adv. Math. 69: 233–303

    Article  MathSciNet  Google Scholar 

  15. Fefferman C., Kohn J.J. and Machedon M. (1990). Hölder estimates on CR-manifolds with a diagonalizable Levi form. Adv. Math. 84: 1–90

    Article  MATH  MathSciNet  Google Scholar 

  16. Greiner, P.C., Stein, E.M.: Estimates for the \({\bar\partial}\) -Neumann problem. In: Mathematical Notes, vol. 19. Princeton University Press, Princeton

  17. Grubb G. (1990). Pseudo-differential boundary problems in L p spaces. Comm. partial Differ. Equ. 15: 289–340

    Article  MATH  MathSciNet  Google Scholar 

  18. Kang H. (1990). An approximation theorem for Szegö kernels and applications. Mich. Math. J. 37: 447–458

    Article  MATH  Google Scholar 

  19. Kang H. and Koo H. (2001). Estimates of the harmonic Bergman kernel on smooth domains. J. Funct. Anal. 185: 220–239

    Article  MATH  MathSciNet  Google Scholar 

  20. Kerzman N. and Stein E.M. (1978). The Szegö kernel in terms of Cauchy–Fantappié kernels. Duke Math. J. 45: 197–224

    Article  MATH  MathSciNet  Google Scholar 

  21. Koenig K.D. (2002). On maximal Sobolev and Hölder estimates for the tangential Cauchy–Riemann operator and boundary Laplacian. Am. J. Math. 124: 129–197

    Article  MATH  MathSciNet  Google Scholar 

  22. Koenig K.D. (2004). A parametrix for the \({\bar\partial}\) -Neumann problem on pseudoconvex domains of finite type. J. Funct. Anal. 216: 243–302

    Article  MATH  MathSciNet  Google Scholar 

  23. Kohn J.J. (1973). Global regularity for \({\bar\partial}\) on weakly pseudoconvex manifolds. Trans. Am. Math. Soc. 181: 273–292

    Article  MATH  MathSciNet  Google Scholar 

  24. Ligocka E. (1987). The Bergman projection on harmonic functions. Stud. Math. 85: 229–246

    MATH  MathSciNet  Google Scholar 

  25. McNeal, J.D.: Local geometry of decoupled pseudoconvex domains. In: Complex Analysis (Wuppertal, 1991), Aspekte der Mathematik. Vieweg, Berlin, vol. E17, pp. 223–230 (1990)

  26. McNeal J.D. (2003). Subelliptic estimates and scaling in the \({\bar\partial}\) -Neumann problem. Contemp. Math. 332: 197–217

    MathSciNet  Google Scholar 

  27. McNeal J.D. and Stein E.M. (1994). Mapping properties of the Bergman projection on convex domains of finite type. Duke Math. J. 73: 177–199

    Article  MATH  MathSciNet  Google Scholar 

  28. McNeal J.D. and Stein E.M. (1997). The Szegö projection on convex domains. Math. Z. 224: 519–553

    Article  MATH  MathSciNet  Google Scholar 

  29. Nagel A., Rosay J.-P., Stein E.M. and Wainger S. (1989). Estimates for the Bergman and Szegö kernels in C2. Ann. Math. 129: 113–149

    Article  MathSciNet  Google Scholar 

  30. Nagel A. and Stein E.M. (2004). The \({\bar\partial}\) -complex on decoupled boundaries in Cn. Ann. Math. 164: 649–713

    Article  MathSciNet  Google Scholar 

  31. Phong D.H. and Stein E.M. (1977). Estimates for the Bergman and Szegö projections on strongly pseudoconvex domains. Duke Math. J. 44: 659–704

    Article  MathSciNet  Google Scholar 

  32. Triebel H. (1978). Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Koenig.

Additional information

Research supported in part by NSF Grants DMS–0400505 and DMS–0457500.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenig, K.D. Comparing the Bergman and Szegö projections on domains with subelliptic boundary Laplacian. Math. Ann. 339, 667–693 (2007). https://doi.org/10.1007/s00208-007-0128-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0128-9

Mathematics Subject Classification (2000)

Navigation