Skip to main content
Log in

Orbifold index and equivariant K-homology

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let G be countable group and M be a proper cocompact even-dimensional G-manifold with orbifold quotient \(\bar{M}\) . Let D be a G-invariant Dirac operator on M. It induces an equivariant K-homology class \([D] \in K^G_0(M)\) and an orbifold Dirac operator \(\bar{D}\) on \(\bar{M}\) . Composing the assembly map \(K^G_0(M) \rightarrow K_0(C*(G))\) with the homomorphism \(K_0(C^*(G)) \rightarrow {\mathbb{Z}}\) given by the representation \(C^*(G) \rightarrow {\mathbb{C}}\) of the maximal group C *-algebra induced from the trivial representation of G we define index\(([D]) \in {\mathbb{Z}}\) . In the second section of the paper we show that index\((\bar{D})\) = index([D]) and obtain explicit formulas for this integer. In the third section we review the decomposition of \(K_0^G(M)\) in terms of the contributions of fixed point sets of finite cyclic subgroups of G obtained by W. Lück. In particular, the class [D] decomposes in this way. In the last section we derive an explicit formula for the contribution to [D] associated to a finite cyclic subgroup of G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators, vol. 298, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin, (1992)

  2. Baum, P., Higson, N., Schick, T.: On the Equivalence of Geometric and Analytic K-Homology. arXiv:math.KT/0701484.

  3. Blackadar, B.: K-theory for operator algebras, vol. 5, 2nd edn. Mathematical Sciences Research Institute Publications. Cambridge University Press, Cambridge (1998)

  4. Balmer P. and Matthey M. (2004). Model theoretic reformulation of the Baum–Connes and Farrell–Jones conjectures. Adv. Math. 189(2): 495–500

    Article  MATH  MathSciNet  Google Scholar 

  5. Bredon G.E. (1993). Topology and geometry, vol. 139, Graduate Texts in Mathematics. Springer, New York

    Google Scholar 

  6. Brown E.H. Jr. (1962). Nonexistence of low dimension relations between Stiefel–Whitney classes. Trans. Am. Math. Soc. 104: 374–382

    Article  MATH  Google Scholar 

  7. Bunke U. (1995). A K-theoretic relative index theorem and Callias-type Dirac operators. Math. Ann. 303(2): 241–279

    Article  MATH  MathSciNet  Google Scholar 

  8. Chernoff P.R. (1973). Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12: 401–414

    Article  MATH  MathSciNet  Google Scholar 

  9. Davis J.F. and Lück W. (1998). Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory. K-Theory 15(3): 201–252

    Article  MATH  MathSciNet  Google Scholar 

  10. Farsi C (1992). K-theoretical index theorems for good orbifolds. Proc. Am. Math. Soc. 115(3): 769–773

    Article  MATH  MathSciNet  Google Scholar 

  11. Farsi C. (1992). index theorems for orbifolds. Quart. J. Math. Oxford Ser. (2) 43(170): 183–200

    Article  MATH  MathSciNet  Google Scholar 

  12. Farsi C. (1992). A note on K-theoretical index theorems for orbifolds. Proc. R. Soc. Lond. Ser. A 437(1900): 429–431

    Article  MATH  MathSciNet  Google Scholar 

  13. Guentner E., Higson N. and Trout J. (2000). Equivariant E-theory for C*-algebras. Mem. Amer. Math. Soc. 148(703): viii+86

    MathSciNet  Google Scholar 

  14. Kasparov G.G. (1988). Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91(1): 147–201

    Article  MATH  MathSciNet  Google Scholar 

  15. Kawasaki T. (1978). The signature theorem for V-manifolds. Topology 17(1): 75–83

    Article  MATH  MathSciNet  Google Scholar 

  16. Kawasaki T. (1979). The Riemann–Roch theorem for complex V-manifolds. Osaka J. Math. 16(1): 151–159

    MATH  MathSciNet  Google Scholar 

  17. Kawasaki T. (1981). The index of elliptic operators over V-manifolds. Nagoya Math. J. 84: 135–157

    MATH  MathSciNet  Google Scholar 

  18. Lück, W., Oliver, B.: Chern characters for the equivariant K-theory of proper G-CW-complexes. In Cohomological methods in homotopy theory (Bellaterra 1998), Birkhäuser, Basel, (2001) vol. 196. Prog. Math. pp. 217–247

  19. Lück W. and Oliver B. (2001). The completion theorem in K-theory for proper actions of a discrete group. Topology 40(3): 585–616

    Article  MATH  MathSciNet  Google Scholar 

  20. Lück W. (2002). Chern characters for proper equivariant homology theories and applications to K- and L-theory. J. Reine Angew. Math. 543: 193–234

    MATH  MathSciNet  Google Scholar 

  21. Lück W. (2002). The relation between the Baum–Connes conjecture and the trace conjecture. Invent. Math. 149(1): 123–152

    Article  MATH  MathSciNet  Google Scholar 

  22. Meyer R. and Nest R. (2006). The Baum–Connes conjecture via localisation of categories. Topology 45(2): 209–259

    Article  MATH  MathSciNet  Google Scholar 

  23. Whitney H. (1936). Differentiable manifolds. Ann. Math. (2) 37(3): 645–680

    Article  MathSciNet  Google Scholar 

  24. Whitney H. (1955). On singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane. Ann. Math. (2) 62: 374–410

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Bunke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunke, U. Orbifold index and equivariant K-homology. Math. Ann. 339, 175–194 (2007). https://doi.org/10.1007/s00208-007-0111-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0111-5

Keywords

Navigation