Skip to main content
Log in

Boundary Harnack principle for Brownian motions with measure-valued drifts in bounded Lipschitz domains

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(\mu=(\mu^1, \dots, \mu^d)\) be such that each \(\mu^i\) is a signed measure on R d belonging to the Kato class K d, 1. A Brownian motion in R d with drift \(\mu\) is a diffusion process in R d whose generator can be informally written as \(\frac12\Delta+\mu\cdot\nabla\) . When each \(\mu^i\) is given by U i(x)dx for some function U i, a Brownian motion with drift \(\mu\) is a diffusion in R d with generator \(\frac12\Delta+U\cdot\nabla\) . In Kim and Song (Ill J Math 50(3):635–688, 2006), some properties of Brownian motions with measure-value drifts in bounded smooth domains were discussed. In this paper we prove a scale invariant boundary Harnack principle for the positive harmonic functions of Brownian motions with measure-value drifts in bounded Lipschitz domains. We also show that the Martin boundary and the minimal Martin boundary with respect to Brownian motions with measure-valued drifts coincide with the Euclidean boundary for bounded Lipschitz domains. The results of this paper are also true for diffusions with measure-valued drifts, that is, when \(\Delta\) is replaced by a uniformly elliptic divergence form operator \(\sum_{i,j=1}^{d} \partial_i (a_{ij} \partial_j)\) with C 1 coefficients or a uniformly elliptic non-divergence form operator \(\sum_{i,j=1}^{d} a_{ij} \partial_i \partial_j\) with C 1 coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancona A. (1978). Principe de Harnack à la frontir̀e et thórm̀e de Fatou pour un opŕateur elliptique dans un domaine lipschitzien. Ann. Inst. Fourier (Grenoble) 28(4): 169–213

    MATH  MathSciNet  Google Scholar 

  2. Aronson D.G. (1988). Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup. Pisa 22: 607–694

    MathSciNet  Google Scholar 

  3. Bass R.F. (1995). Probabilistic Techniques in Analysis. Springer, Heidelberg

    MATH  Google Scholar 

  4. Bass R.F. and Burdzy K. (1991). A boundary Harnack principle in twisted Hölder domains. Ann. Math. 134(2): 253–276

    Article  MathSciNet  Google Scholar 

  5. Bass, R.F., Burdzy, K.: A probabilistic proof of the boundary Harnack principle. Seminar on Stochastic Processes (1989), 1–16, Birkhäuser, Boston (1990)

  6. Bass R.F. and Chen Z.-Q. (2003). Brownian motion with singular drift. Ann. Probab. 31(2): 791–817

    Article  MATH  MathSciNet  Google Scholar 

  7. Blumenthal R.M. and Getoor R.K. (1968). Markov Processes and Potential Theory. Academic, New York

    MATH  Google Scholar 

  8. Caffarelli L., Fabes E., Mortola S. and Salsa S. (1981). Boundary behavior of nonnegative solutions of elliptic operators in divergence form. Indiana Univ. Math. J. 30(4): 621–640

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen Z.-Q., Williams R.J. and Zhao Z. (1999). On the existence of positive solutions for semilinear elliptic equations with singular lower order coefficients and Dirichlet boundary conditions. Math. Ann. 315(4): 735–769

    Article  MATH  MathSciNet  Google Scholar 

  10. Chung K.L. (1982). Lectures from Markov processes to Brownian motion. Springer, New York

    MATH  Google Scholar 

  11. Chung K.L. and Zhao Z.X. (1995). From Brownian motion to Schrödinger’s equation. Springer, Berlin

    MATH  Google Scholar 

  12. Chung, K.L., Liao, M., Rao, K.M.: Duality under a new setting. Seminar on stochastic processes (1983), pp. 23–38. Birkhaüser, Boston (1984)

  13. Chung K.L. and Rao K.M. (1980). A new setting for potential theory. Ann. Inst. Fourier 30: 167–198

    MATH  MathSciNet  Google Scholar 

  14. Dahlberg B. (1977). Estimates of harmonic measure. Arch. Rational Mech. Anal. 65(3): 275–288

    Article  MATH  MathSciNet  Google Scholar 

  15. Davies E.B. (1987). The equivalence of certain heat kernel and Green function bounds. J. Funct. Anal. 71: 88–103

    Article  MATH  MathSciNet  Google Scholar 

  16. Fabes E., Garofalo N., Mari’n-Malave S. and Salsa S. (1988). Fatou theorems for some nonlinear elliptic equations. Rev. Mat. Iberoam. 4(2): 227–251

    MATH  MathSciNet  Google Scholar 

  17. Garroni M.G. and Menaldi J.L. (1992). Green Functions for Second Order Parabolic Integro-differential Problems. Longman, Harlow

    MATH  Google Scholar 

  18. Kim P. and Song R. (2007). Estimates on Green functions and the Schrödinger-type equations for non- symmetric diffusions with measure-valued drifts. J. Math. Anal. Appl. 332(1): 57–80

    Article  MATH  MathSciNet  Google Scholar 

  19. Kim, P., Song, R.: Intrinsic ultracontractivity of non-symmetric diffusions with measure-valued drifts and potentials. Preprint (2006)

  20. Kim, P., Song, R.: On dual processes of non-symmetric diffusions with measure-valued drifts. Preprint (2006)

  21. Kim P. and Song R. (2006). Two-sided estimates on the density of Brownian motion with singular drift. Ill. J. Math. 50(3): 635–688

    MATH  MathSciNet  Google Scholar 

  22. Martin R.S. (1941). Minimal positive harmonic functions. Trans. Am. Math. Soc. 49: 137–172

    Article  MATH  Google Scholar 

  23. Pop-Stojanović Z.R. (1988). Continuity of excessive harmonic functions for certain diffusions. Proc. Am. Math. Soc. 103(2): 607–611

    Article  MATH  Google Scholar 

  24. Riahi L. (2005). Comparison of Green functions and harmonic measure of parabolic operators. Potential Anal. 23(4): 381–402

    Article  MATH  MathSciNet  Google Scholar 

  25. Taylor, J.C.: The Martin compactification associated with a second order strictly elliptic partial differential operator on a manifold M. In: Topics in probability and Lie groups: boundary theory, pp. 153–202, CRM Proc. Lecture Notes, 28, Am. Math. Soc., Providence, RI (2001)

  26. Wu J.M. (1978). Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains. Ann. Inst. Fourier (Grenoble) 28(4): 147–167

    MATH  MathSciNet  Google Scholar 

  27. Zhang Q.S. (1997). Gaussian bounds for the fundamental solutions of \(\nabla (A\nabla u)+B\nabla u-u\sb t=0\). Manuscr. Math. 93: 381–390

    MATH  Google Scholar 

  28. Zhang Q.S. (2002). The boundary behavior of heat kernels of Dirichlet Laplacians. J. Differ. Equ. 182: 416–430

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panki Kim.

Additional information

The research of R. Song is supported in part by a joint US-Croatia grant INT 0302167. The research of P. Kim is supported by Research Settlement Fund for the new faculty of Seoul National University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, P., Song, R. Boundary Harnack principle for Brownian motions with measure-valued drifts in bounded Lipschitz domains. Math. Ann. 339, 135–174 (2007). https://doi.org/10.1007/s00208-007-0110-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0110-6

Mathematics Subject Classification (2000)

Navigation