Skip to main content
Log in

Samuel multiplicity and Fredholm theory

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this note we combine methods from commutative algebra and complex analytic geometry to calculate the generic values of the cohomology dimensions of a commuting multioperator on its Fredholm domain. More precisely, we prove that, for a given Fredholm tuple T =  (T 1, ..., T n ) of commuting bounded operators on a complex Banach space X, the limits \(c_p(T) = {\rm lim}_{k \rightarrow \infty} {\rm dim} H^p(T^k,X)/k^n\) exist and calculate the generic dimension of the cohomology groups H p(zT, X) of the Koszul complex of T near z =  0. To deduce this result we show that the above limits coincide with the Samuel multiplicities of the stalks of the cohomology sheaves \(H^p(z-T,{\mathcal{O}}^{X}_{{\mathbb{C}}^n})\) of the associated complex of analytic sheaves at z =  0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deimling K. (1974). Nichtlineare Gleichungen und Abbildungsgrade. Springer, Heidelberg

    MATH  Google Scholar 

  2. Douglas R. and Yan K. (1993). Hilbert–Samuel polynomials for Hilbert modules. Indiana Univ. Math. J. 42: 811–820

    Article  MATH  MathSciNet  Google Scholar 

  3. Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. In: Graduate texts in Mathematics, vol. 150. Springer, Heidelberg (1995)

  4. Eschmeier, J.: On the Hilbert–Samuel multiplicity of Fredholm tuples. Indiana Univ. Math. J. (2007) (in press)

  5. Eschmeier, J.: Samuel multiplicity for several commuting operators. J. Operator Theory (2007) (in press)

  6. Eschmeier, J., Putinar, M.: Spectral decompositions and analytic sheaves. London Mathematical Society Monographs, New Series, vol. 10. Clarendon Press, Oxford (1996)

  7. Fang X. (2004). Samuel multiplicity and the structure of semi-Fredholm operators. Adv. Math. 186: 411–437

    Article  MATH  MathSciNet  Google Scholar 

  8. Fang X. (2006). The Fredholm index of a pair of commuting operators. GAFA 16: 367–402

    Article  MATH  Google Scholar 

  9. Fang, X.: The Fredholm index of a pair of commuting operators, II, Preprint (2006)

  10. Grauert H. and Remmert R. (1984). Coherent analytic sheaves. Springer, Heidelberg

    MATH  Google Scholar 

  11. Gunning R.C. and Rossi H. (1965). Analytic functions of several complex variables. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  12. Northcott D.G. (1968). Lessons on rings, modules and multiplicities. Cambridge University Press, London

    MATH  Google Scholar 

  13. Northcott, D.G.: Finite free resolutions. In: Cambridge Tracts in Mathematics, vol. 71. Cambridge University Press, London (1976)

  14. Roberts, P.C.: Multiplicities and Chern classes in local algebra. In: Cambridge Tracts in Mathematics, vol. 133. Cambridge University Press, Cambridge (1998)

  15. Serre J.-P. (2000). Local algebra. Springer, Heidelberg

    MATH  Google Scholar 

  16. Vasilescu F.-H. (1982). Analytic functional calculus and spectral decompositions. Reidel, Dordrecht

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Eschmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eschmeier, J. Samuel multiplicity and Fredholm theory. Math. Ann. 339, 21–35 (2007). https://doi.org/10.1007/s00208-007-0103-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0103-5

Mathematics Subject Classification (2000)

Navigation