Skip to main content
Log in

Existence of analytic solutions for the classical Stefan problem

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that under mild regularity assumptions on the initial data the two-phase classical Stefan problem admits a (unique) solution that is analytic in space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H. (1995). Linear and Quasilinear Parabolic Problems, vol. I. Birkhäuser, Basel

    Google Scholar 

  2. Angenent S. (1990). Nonlinear analytic semiflows. Proc. Roy. Soc. Edinb. Sect. A. 115: 91–107

    MathSciNet  Google Scholar 

  3. Athanasopoulos I., Caffarelli L., Salsa S. (1996). Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems. Ann. Math. 143: 413–434

    Article  MATH  MathSciNet  Google Scholar 

  4. Athanasopoulos I., Caffarelli L., Salsa S. (1996). Regularity of the free boundary in parabolic phase-transition problems. Acta Math. 176(2): 245–282

    Article  MATH  MathSciNet  Google Scholar 

  5. Athanasopoulos I., Caffarelli L., Salsa S. (1998). Phase transition problems of parabolic type: flat free boundaries are smooth. Comm. Pure Appl. Math 51: 77–112

    Article  MATH  MathSciNet  Google Scholar 

  6. Bazaliĭ, B.V.: Stability of smooth solutions of a two-phase Stefan problem (Russian). Dokl. Akad. Nauk SSSR 262, 265–269 (1982); Trans. Soviet Math. Dokl. 25, 46–50 (1982)

  7. Bazaliĭ B.V. (1986). The Stefan problem (Russian). Dokl. Akad. Nauk Ukrain. SSR Ser. A 11(3–7): 84

    Google Scholar 

  8. Bazaliĭ, B.V., Degtyarev, S.P.: On the classical solvability of a multidimensional Stefan problem with convective movement of a viscous incompressible fluid (Russian). Mat. Sb. (N.S.) 132 (1987); translation in Math. USSR-Sb. 60, 1–17 (1988)

  9. Bizhanova, G.I., Solonnikov, V.A.: Some model problems for second-order parabolic equations with a time derivative in the boundary conditions. (Russian) Algebra i Analiz 6, 30–50 (1994); Trans. St. Petersburg Math. J. 6, 1151–1166 (1995)

  10. Bizhanova, G.I.: Solution in a weighted Hölder function space of multidimensional two-phase Stefan and Florin problems for second-order parabolic equations in a bounded domain. (Russian) Algebra i Analiz 7, 46–76 (1995); Trans. St. Petersburg Math. J. 7, 217–241 (1996)

    Google Scholar 

  11. Bizhanova, G.I., Solonnikov, V.A.: On the solvability of an initial-boundary value problem for a second-order parabolic equation with a time derivative in the boundary condition in a weighted Hölder space of functions (Russian). Algebra i Analiz 5, 109–142 (1993); Trans. St. Petersburg Math. J. 5, 97–124 (1994)

    Google Scholar 

  12. Bizhanova, G.I., Solonnikov, V.A.: Some model problems for second-order parabolic equations with a time derivative in the boundary conditions (Russian). Algebra i Analiz 6, 30–50 (1994); Trans. St. Petersburg Math. J. 6, 1151–1166 (1995)

  13. Bizhanova, G.I., Solonnikov, V.A.: On problems with free boundaries for second-order parabolic equations (Russian). Algebra i Analiz 12, 98–139 (2000); Trans. St. Petersburg Math. J. 12, 949–981 (2001)

    Google Scholar 

  14. Caffarelli L.A. (1977). The regularity of free boundaries in higher dimensions. Acta Math. 139: 155–184

    Article  MathSciNet  Google Scholar 

  15. Caffarelli L.A. (1977). Some aspects of the one-phase Stefan problem. Indiana Univ. Math. J. 27: 73–77

    Article  MathSciNet  Google Scholar 

  16. Caffarelli L.A., Evans L.C. (1983). Continuity of the temperature in the two-phase Stefan problem. Arch. Ration. Mech. Anal. 81: 199–220

    Article  MATH  MathSciNet  Google Scholar 

  17. Caffarelli L.A., Friedman A. (1979). Continuity of the temperature in the Stefan problem. Indiana Univ. Math. J. 28: 53–70

    Article  MATH  MathSciNet  Google Scholar 

  18. DiBenedetto, E.: Regularity properties of the solution of an n-dimensional two-phase Stefan problem. Boll. Un. Mat. Ital. Suppl. 129–152 (1980)

  19. DiBenedetto E. (1982). Continuity of weak solutions to certain singular parabolic equations. Ann. Mat. Pura Appl. 130(4): 131–176

    Article  MathSciNet  Google Scholar 

  20. DiBenedetto E., Friedman A. (1984). The ill-posed Hele-Shaw model and the Stefan problem for supercooled water. Trans. Am. Math. Soc. 282: 183–204

    Article  MATH  MathSciNet  Google Scholar 

  21. DiBenedetto E., Vespri V. (1995). On the singular equation \({\beta(u)_{t}=\Delta u}\). Arch. Ration. Mech. Anal. 132: 247–309

    Article  MATH  MathSciNet  Google Scholar 

  22. Duvaut G. (1973). Résolution d’un problème de Stefan (fusion d’un bloc de glace à zéro degré). C.R. Acad. Sci. Paris Sér. A-B 276: 1461–1463

    MATH  MathSciNet  Google Scholar 

  23. Escher J. (1997). On moving boundaries in deformable media. Adv. Math. Sci. Appl. 7: 275–316

    MATH  MathSciNet  Google Scholar 

  24. Escher J., Simonett G. (1996). Analyticity of the interface in a free boundary problem. Math. Ann. 305: 439–459

    Article  MATH  MathSciNet  Google Scholar 

  25. Escher J., Simonett G. (2003). Analyticity of solutions to fully nonlinear parabolic evolution equations on symmetric spaces. Dedicated to Philippe Bnilan. J. Evol. Equ. 3: 549–576

    Article  MATH  MathSciNet  Google Scholar 

  26. Escher, J., Prüss, J., Simonett, G.: A new approach to the regularity of solutions for parabolic equations. Evolution equations. Lect. Notes Pure Appl. Math., vol. 234, pp. 167–190. Dekker, New York (2003)

  27. Escher, J., Prüss, J., Simonett, G.: Analytic solutions for a Stefan problem with Gibbs–Thomson correction. J. Reine Angew. Math. 1–52 (2003)

  28. Friedman A. (1964). Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  29. Friedman A. (1968). The Stefan problem in several space variables. Trans. Am. Math. Soc. 133: 51–87

    Article  MATH  Google Scholar 

  30. Friedman A. (1976). Analyticity of the free boundary for the Stefan problem. Arch. Ration. Mech. Anal. 61: 97–125

    Article  MATH  Google Scholar 

  31. Friedman A. (1982). Variational Principles and Free-Boundary Problems. Wiley, New York

    MATH  Google Scholar 

  32. Friedman A., Kinderlehrer D. (1975). A one phase Stefan problem. Indiana Univ. Math. J. 24: 1005–1035

    Article  MATH  MathSciNet  Google Scholar 

  33. Frolova E.V. (1999). Solvability in Sobolev spaces of a problem for a second order parabolic equation with time derivative in the boundary condition. Port. Math. 56: 419–441

    MATH  MathSciNet  Google Scholar 

  34. Hanzawa E.I. (1981). Classical solutions of the Stefan problem. Tôhoku Math. J. 33: 297–335

    MATH  MathSciNet  Google Scholar 

  35. Hieber M., Prüss J. (1998). Functional calculi for linear operators in vector-valued L p-spaces via the transference principle. Adv. Differ. Equ. 3: 847–872

    MATH  Google Scholar 

  36. Kalton N., Weis L. (2001). The H -calculus and sums of closed operators. Math. Ann. 321: 319–345

    Article  MATH  MathSciNet  Google Scholar 

  37. Kamenomostskaja S.L. (1965). On Stefan’s problem. Math. Sbornik 53: 485–514

    MathSciNet  Google Scholar 

  38. Kinderlehrer D., Nirenberg L. (1978). The smoothness of the free boundary in the one phase Stefan problem. Comm. Pure Appl. Math. 31: 257–282

    Article  MATH  MathSciNet  Google Scholar 

  39. Kinderlehrer D., Nirenberg L. (1978). Analyticity at the boundary of solutions of nonlinear second-order parabolic equations. Comm. Pure Appl. Math. 31: 283–338

    Article  MATH  MathSciNet  Google Scholar 

  40. Koch H. (1998). Classical solutions to phase transition problems are smooth. Comm. Part. Differ. Equ. 23: 389–437

    MATH  Google Scholar 

  41. Ladyženskaya, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type, vol. 23 of Transl. Math. Monographs. American Mathematical Society (1968)

  42. Masuda, K.: On the regularity of solutions of the nonstationary Navier–Stokes equations. Approximation methods for Navier–Stokes problems. In: Proc. Sympos., Univ. Paderborn, Paderborn, 1979. Lecture Notes in Math., vol. 771, pp. 360–370. Springer, Berlin (1980)

  43. Matano, H.: Asymptotic behavior of the free boundaries arising in one phase Stefan problems in multi-dimensional spaces. Lect. Notes Num. Appl. Anal. Kinokuniya, Tokyo 5, 133–151 (1982)

  44. Meirmanov A.M. (1980). On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations. Math. Sb. 112: 170–192

    MathSciNet  Google Scholar 

  45. Meirmanov A.M. (1992). The Stefan Problem. De Gruyter, Berlin

    MATH  Google Scholar 

  46. Nochetto R.H. (1987). A class of nondegenerate two-phase Stefan problems in several space variables. Comm. Part. Differ. Equ. 12: 21–45

    MATH  MathSciNet  Google Scholar 

  47. Prüss J. (1993). Evolutionary integral equations and applications, vol. 87 of Monographs in Mathematics. Birkhäuser, Basel

    Google Scholar 

  48. Prüss J., Sohr H. (1990). On operators with bounded imaginary powers in Banach spaces. Math. Z. 203: 429–452

    Article  MATH  MathSciNet  Google Scholar 

  49. Radkevich E.V. (1986). On the solvability of general nonstationary problems with a free boundary. (Russian) Dokl. Akad. Nauk SSSR 288: 1094–1099

    MathSciNet  Google Scholar 

  50. Rubinstein, L.I.: The Stefan Problem. Translations of Mathematical Monographs, vol. 27. American Mathematical Society, Providence (1971)

  51. Sacks P.E. (1983). Continuity of solutions of a singular parabolic equation. Nonlinear Anal. 7: 387–409

    Article  MATH  MathSciNet  Google Scholar 

  52. Solonnikov, V.A.: Free boundary problems for second order parabolic equations. Progress in partial differential equations, vol. 2 (Pont–Mousson, 1997). Pitman Res. Notes Math. Ser., 384, pp. 116–126. Longman, Harlow (1998)

  53. Solonnikov V.A., Frolova E.V. (2000). L p -theory for the Stefan problem. J. Math. Sci. 99(1): 989–1006

    MathSciNet  Google Scholar 

  54. Triebel H. (1978). Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam

    Google Scholar 

  55. Triebel H. (1983). Theory of function spaces, vol. 78 of Monographs in Mathematics. Birkhäuser, Basel

    Google Scholar 

  56. Visintin A. (1996). Models of phase transitions. Progress in nonlinear differential equations and their applications vol. 28, Birkhäuser

    MATH  Google Scholar 

  57. Ziemer W.P. (1982). Interior and boundary continuity of weak solutions of degenerate parabolic equations. Trans. Am. Math. Soc. 271: 733–748

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gieri Simonett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prüss, J., Saal, J. & Simonett, G. Existence of analytic solutions for the classical Stefan problem. Math. Ann. 338, 703–755 (2007). https://doi.org/10.1007/s00208-007-0094-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0094-2

Keywords

Navigation