Skip to main content
Log in

The integral monodromy of hyperelliptic and trielliptic curves

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We compute the \(\mathbb{Z}/\ell\) and \(\mathbb{Z}_{\ell}\) monodromy of every irreducible component of the moduli spaces of hyperelliptic and trielliptic curves. In particular, we provide a proof that the \(\mathbb{Z}/\ell\) monodromy of the moduli space of hyperelliptic curves of genus g is the symplectic group \({\rm S}_{P2g}(\mathbb{Z}/\ell)\). We prove that the \(\mathbb{Z}/\ell\) monodromy of the moduli space of trielliptic curves with signature (r,s) is the special unitary group \({\rm SU}_{(r,s)}(\mathbb{Z}/\ell\otimes\mathbb{Z}[\zeta_{3}])\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A’Campo N. (1979). Tresses, monodromie et le groupe symplectique. Comment. Math. Helv. 54(2): 318–327

    Article  MATH  MathSciNet  Google Scholar 

  2. Achter J.D. (2006). The distribution of class groups of function fields. J. Pure Appl. Algebra 204(2): 316–333

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellaïche J. (2006). Relèvement des formes modulaires de Picard. J. Lond. Math. Soc. 74(1): 13–25

    Article  MATH  Google Scholar 

  4. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21. Springer, Berlin Heidelberg New York (1990)

  5. Carter, R.W.: Finite Groups of Lie Type. Wiley Classics Library. Wiley, Chichester (1993). (Conjugacy classes and complex characters. Reprint of the 1985 original, A Wiley-Interscience Publication)

  6. Chai C.L. and Oort F. (2001). A note on the existence of absolutely simple Jacobians. J. Pure Appl. Algebra 155(2–3): 115–120

    Article  MATH  MathSciNet  Google Scholar 

  7. Chavdarov N. (1997). The generic irreducibility of the numerator of the zeta function in a family of curves with large monodromy. Duke Math. J. 87(1): 151–180

    Article  MATH  MathSciNet  Google Scholar 

  8. Deligne P. and Mumford D. (1969). The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math. 36: 75–109

    MATH  MathSciNet  Google Scholar 

  9. Ekedahl, T.: The action of monodromy on torsion points of Jacobians. In: Arithmetic algebraic geometry (Texel, 1989), pp. 41–49. Birkhäuser Boston, Boston (1991)

  10. Ekedahl, T.: Boundary behaviour of Hurwitz schemes. In: The moduli space of curves (Texel Island, 1994), Progr. Math., vol. 129, pp. 173–198. Birkhäuser Boston, Boston (1995)

  11. Faltings, G., Chai, C.L.: Degeneration of abelian varieties. Springer, Berlin Heidelberg New~York (1990) (with an appendix by David Mumford)

  12. Frey, G., Kani, E., Völklein, H.: Curves with infinite K-rational geometric fundamental group. In: Aspects of Galois theory (Gainesville, FL, 1996), London Math. Soc. Lecture Note Ser., vol. 256, pp. 85–118. Cambridge University Press, Cambridge (1999)

  13. Gordon, B.B.: Canonical models of Picard modular surfaces. In: The zeta functions of Picard modular surfaces, pp. 1–29. University of Montréal, Montreal (1992)

  14. Hall, C.: Big symplectic or orthogonal monodromy modulo ℓ (2006). ArXiv:math.NT/0608718

  15. Howe E.W. and Zhu H.J. (2002). On the existence of absolutely simple abelian varieties of a given dimension over an arbitrary field. J. Number Theory 92(1): 139–163

    Article  MATH  MathSciNet  Google Scholar 

  16. Katz, N.M.: Twisted L-functions and monodromy. Annals of Mathematics Studies, vol. 150. Princeton University Press, Princeton (2002)

  17. Katz, N.M., Sarnak, P.: Random matrices, Frobenius eigenvalues, and monodromy. American Mathematical Society, Providence (1999)

  18. King O. (1981). Maximal subgroups of the classical groups associated with nonisotropic subspaces of a vector space. J. Algebra 73(2): 350–375

    Article  MATH  MathSciNet  Google Scholar 

  19. Knudsen F.F. (1983). The projectivity of the moduli space of stable curves. II. The stacks M g ,n. Math. Scand. 52(2): 161–199

    MATH  MathSciNet  Google Scholar 

  20. Koo J.K. (1991). On holomorphic differentials of some algebraic function field of one variable over C. Bull. Aust. Math. Soc. 43(3): 399–405

    Article  MATH  MathSciNet  Google Scholar 

  21. Kowalski, E.: The large sieve, monodromy and zeta functions of curves (2005). ArXiv:math. NT/0503714

  22. Larsen, M.J.: Arithmetic compactification of some Shimura surfaces. In: The zeta functions of Picard modular surfaces, pp. 31–45. University of Montréal, Montreal (1992)

  23. Larsen M.J. (1995). Maximality of Galois actions for compatible systems. Duke Math. J. 80(3): 601–630

    Article  MATH  MathSciNet  Google Scholar 

  24. Laumon, G., Moret-Bailly, L.: Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol.~39. Springer, Berlin Heidelberg New York (2000)

  25. Matthews C.R., Vaserstein L.N. and Weisfeiler B. (1984). Congruence properties of Zariski-dense subgroups. I. Proc. Lond. Math. Soc. (3) 48(3): 514–532

    Article  MATH  MathSciNet  Google Scholar 

  26. Noohi B. (2004). Fundamental groups of algebraic stacks. J. Inst. Math. Jussieu 3(1): 69–103

    Article  MATH  MathSciNet  Google Scholar 

  27. Pries R. (2002). Conductors of wildly ramified covers, i. C. R. Acad. Sci. Paris Sér. I Math. 335(1): 481–484

    MATH  MathSciNet  Google Scholar 

  28. Raynaud M. (1994). Revêtements de la droite affine en caractéristique p > 0 et conjecture d’Abhyankar. Invent. Math. 116(1–3): 425–462

    Article  MATH  MathSciNet  Google Scholar 

  29. Vasiu A. (2003). Surjectivity criteria for p-adic representations. I. Manuscr. Math. 112(3): 325–355

    MATH  MathSciNet  Google Scholar 

  30. Völklein, H.: Groups as Galois groups. Cambridge Studies in Advanced Mathematics, vol.~53. Cambridge University Press, Cambridge (1996)

  31. Zarhin Y.G. (2002). Cyclic covers of the projective line, their Jacobians and endomorphisms. J. Reine Angew. Math. 544: 91–110

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Achter.

Additional information

Rachel Pries was partially supported by NSF grant DMS-04-00461.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achter, J.D., Pries, R. The integral monodromy of hyperelliptic and trielliptic curves. Math. Ann. 338, 187–206 (2007). https://doi.org/10.1007/s00208-006-0072-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-006-0072-0

Mathematics Subject Classification (2000)

Navigation