Skip to main content
Log in

A note on simultaneous Diophantine approximation on planar curves

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(\mathcal{S}_{n}(\psi_{1},\dots,\psi_{n})\) denote the set of simultaneously \((\psi_{1},\dots,\psi_{n})\)- approximable points in \(\mathbb{R}^{n}\) and \(\mathcal{S}^{*}_{n}(\psi)\) denote the set of multiplicatively ψ-approximable points in \(\mathbb{R}^{n}\). Let \(\mathcal{M}\) be a manifold in \(\mathbb{R}^{n}\). The aim is to develop a metric theory for the sets \( \mathcal{M} \cap \mathcal{S}_{n}(\psi_1,\dots,\psi_n) \) and \(\mathcal{M} \cap \mathcal{S}^{*}_{n}(\psi) \) analogous to the classical theory in which \(\mathcal{M}\) is simply \(\mathbb{R}^{n}\). In this note, we mainly restrict our attention to the case that \(\mathcal{M}\) is a planar curve \(\mathcal{C}\). A complete Hausdorff dimension theory is established for the sets \(\mathcal{C} \cap \mathcal{S}_{2}(\psi_{1},\psi_{2}) \) and \(\mathcal{C} \cap \mathcal{S}^{*}_{2}(\psi) \). A divergent Khintchine type result is obtained for \(\mathcal{C} \cap \mathcal{S}_{2}(\psi_1,\psi_2) \); i.e. if a certain sum diverges then the one-dimensional Lebesgue measure on \(\mathcal{C}\) of \(\mathcal{C} \cap \mathcal{S}_{2}(\psi_1,\psi_2) \) is full. Furthermore, in the case that \(\mathcal{C}\) is a rational quadric the convergent Khintchine type result is obtained for both types of approximation. Our results for \(\mathcal{C} \cap \mathcal{S}_{2}(\psi_1,\psi_2) \) naturally generalize the dimension and Lebesgue measure statements of Beresnevich et al. (Mem AMS, 179 (846), 1–91 (2006)). Moreover, within the multiplicative framework, our results for \(\mathcal{C} \cap \mathcal{S}^{*}_{2}(\psi)\) constitute the first of their type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker R.C. (1978) Dirichlet’s theorem on Diophantine approximation. Math. Proc. Cam. Phil. Soc. 83, 37–59

    MATH  Google Scholar 

  2. Beresnevich V., Dickinson H., Velani S.L. (2006) Measure theoretic laws for limsup sets Mem. AMS. 179(846): 1–91. Pre-print: arXiv:math.NT/0401118

    MathSciNet  Google Scholar 

  3. Beresnevich, V., Dickinson, H., Velani, S.L.: Diophantine approximation on planar curves and the distribution of rational points. Annals of Math. (to appear). Includes an appendix: Sums of two squares near perfect squares. by R.C. Vaughan. Pre-print: arXiv:math.NT/0401148

  4. Beresnevich, V., Velani, S.L.: Schmidt’s theorem, Hausdorff measures and Slicing. Int. Math. Res. Notices (to appear). Pre-print (20pp): arXiv:math.NT/0507369

  5. Bernik, V.I., Dodson, M.M.: Metric Diophantine approximation on manifolds. In: Cambridge Tracts in Mathematics, vol. 137. Cambridge University Press, Cambridge (1999)

  6. Bernik V.I., Kleinbock D.Y., Margulis G.A. (2001) Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions. Int. Math. Res. Notices 9, 453–486

    Article  MathSciNet  Google Scholar 

  7. Bovey J.D., Dodson M.M. (1978) The fractional dimension of sets whose simultaneous rational approximations have errors with a small product. Bull. Lond. Math. Soc. 10(2): 213–218

    Article  MATH  MathSciNet  Google Scholar 

  8. Dickinson H., Dodson M.M. (2000) Extremal manifolds and Hausdorff dimension. Duke Math. J. 101(2): 271–281

    Article  MATH  MathSciNet  Google Scholar 

  9. Drutu C. (2005) Diophantine approximation on rational quadrics. Math. Ann. 333(2): 405–469

    Article  MATH  MathSciNet  Google Scholar 

  10. Gallagher P.X. (1962) Metric simultaneous Diophantine approximation. J. Lond. Math. Soc. 37, 387–390

    Article  MATH  MathSciNet  Google Scholar 

  11. Huxley M.N. Area. Lattice points and exponential sums. Oxford (1996)

  12. Kleinbock D.Y., Margulis G.A. (1998) Flows on homogeneous spaces and Diophantine approximation on manifolds. Ann. Math. 148, 339–360

    Article  MATH  MathSciNet  Google Scholar 

  13. Khintchine A. (1926) Zur metrischen Theorie der diophantischen Approximationen. Math. Z. 24, 706–714

    Article  MathSciNet  MATH  Google Scholar 

  14. Rynne B.P. (1998) Hausdorff dimension and generalized simultaneous Diophantine approximation. Bull. London Math. Soc. 30(4): 365–376

    Article  MATH  MathSciNet  Google Scholar 

  15. Schmidt W.M. (1964) Metrische Sätze über simultane Approximation abhängiger Größ en. Monatsch. Math. 63, 154–166

    Article  Google Scholar 

  16. Sprindžuk V.G. Metric theory of Diophantine approximation. Wiley, New York (1979) (English transl.)

  17. Yu K. (1981) A note on a problem of Baker in metrical number theory. Math. Proc. Camb. Philos. Soc. 90, 215–227

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanju L. Velani.

Additional information

The research of Victor V. Beresnevich was supported by an EPSRC Grant R90727/01. Sanju L. Velani is a Royal Society University Research Fellow.

For Iona and Ayesha on No. 3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beresnevich, V.V., Velani, S.L. A note on simultaneous Diophantine approximation on planar curves. Math. Ann. 337, 769–796 (2007). https://doi.org/10.1007/s00208-006-0055-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-006-0055-1

Mathematics Subject Classification (2000)

Navigation