Skip to main content
Log in

Rank one solvable p-adic differential equations and finite Abelian characters via Lubin–Tate groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We introduce a new class of exponentials of Artin–Hasse type, called π-exponentials. These exponentials depend on the choice of a generator π of the Tate module of a Lubin–Tate group \(\mathfrak{G}\) over \(\mathbb{Z}_p\). They arise naturally as solutions of solvable differential modules over the Robba ring. If \(\mathfrak{G}\) is isomorphic to \(\widehat{\mathbb{G}}_m\) over \(\mathbb{Z}_p\), we develop methods to test their over-convergence, and get in this way a stronger version of the Frobenius structure theorem for differential equations. We define a natural transformation of the Artin–Schreier complex into the Kummer complex. This provides an explicit generator of the Kummer unramified extension of \(\epsilon^\dagger_{K_{\infty}}\), whose residue field is a given Artin–Schreier extension of \(k(\!(t)\!)\), where k is the residue field of K. We then compute explicitly the group, under tensor product, of isomorphism classes of rank one solvable differential equations. Moreover, we get a canonical way to compute the rank one φ-module over \(\epsilon^\dagger_{K_\infty}\) attached to a rank one representation of \(\mathrm{Gal}(k(\!(t)\!)^{\mathrm{sep}}/k(\!(t)\!))\), defined by an Artin–Schreier character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. André Y. (2000) Filtrations de type Hasse–Arf et monodromie p-adique. Invent. Math. 148(2): 285–317

    Google Scholar 

  2. Bourbaki N.: Éléments de mathématique. I: Les structures fondamentales de l’analyse. Fascicule XI. Livre II: Algèbre. Chapitre 5: Corps commutatifs. Deuxième édition. Actualités Scientifiques et Industrielles, no. 1102. Hermann, Paris (1959)

  3. Bourbaki N. (1983) Algèbre Commutative, Chapitre 9 “Anneaux locaux noethériens complets”. Masson, Paris

    Google Scholar 

  4. Bourbaki N.: General Topology. Springer, Berlin Heidelberg New York (1983, second printing)

  5. Brylinski J.-L.(1983) Théorie du corps de classes de Kato et revêtements abéliens de surfaces. Ann. Inst. Fourier (Grenoble) 33(3): 23–38

    MATH  MathSciNet  Google Scholar 

  6. Chiarellotto B., Christol G. (1996) On overconvergent isocrystals and F-isocrystals of rank one. Compos. Math. 100(1): 77–99

    MATH  MathSciNet  Google Scholar 

  7. Christol G., Dwork B. (1994) Modules différentiels sur des couronnes. Ann. Inst. Fourier (Grenoble) 44(3): 663–701

    MATH  MathSciNet  Google Scholar 

  8. Chinellato D.: Una generalizzazione del π di dwork. Tesi di laurea. Univ. Padova (2002)

  9. Christol G., Mebkhout Z.: Équations différentielles p-adiques et coefficients p-adiques sur les courbes. Astérisque 279, 125–183 (2002) Cohomologies p-adiques et applications arithmétiques, II.

    Google Scholar 

  10. Christol G., Robba P.: Équations différentielles p-adiques. Actualités Mathématiques. (current mathematical topics). Hermann, Paris. Applications aux sommes exponentielles. (Applications to exponential sums) (1994)

  11. Crew R.: F-isocrystals and p-adic representations. In: Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), vol. 46 of Proceedings of Symposium Pureon Mathematics, pp. 111–138. Am. Math. Soc., Providence (1987)

  12. Crew R. (2000) Canonical extensions, irregularities, and the Swan conductor. Math. Ann. 316(1): 19–37

    Article  MATH  MathSciNet  Google Scholar 

  13. Dwork B.: Lectures on p-adic differential equations, vol. 253 of Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Science). Springer, Berlin Heidelberg New York (1982)

  14. Fontaine J.M.: Représentations p-adiques des corps locaux. I. In The Grothendieck Festschrift, vol. II, vol. 87 of Prog. Math., pp. 249–309. Birkhäuser Boston, Boston (1990)

  15. Hazewinkel M.: Formal groups and applications, vol. 78 of Pure and Applied Mathematics. Academic, New York (1978)

  16. Kedlaya K.S. (2004) A p-adic local monodromy theorem. Ann. Math. (2)160(1): 93–184

    Article  MATH  MathSciNet  Google Scholar 

  17. Lubin J., Tate J. (1965) Formal complex multiplication in local fields. Ann. Math. 2(81): 380–387

    MathSciNet  Google Scholar 

  18. Matsuda S. (1995) Local indices of p-adic differential operators corresponding to Artin–Schreier–Witt coverings. Duke Math. J. 77(3): 607–625

    Article  MATH  MathSciNet  Google Scholar 

  19. Matsuda S. (2002) Katz correspondence for quasi-unipotent overconvergent isocrystals. Compos. Math. 134(1): 1–34

    Article  MATH  MathSciNet  Google Scholar 

  20. Mebkhout Z. (2002) Analogue p-adique du théorème de Turrittin et le théorème de la monodromie p-adique. Invent. Math. 148(2): 319–351

    Article  MATH  MathSciNet  Google Scholar 

  21. Robba P. Indice d’un opérateur différentiel p-adique. III. Application to twisted exponential sums. Asterisque 119–120, 191–266 (1984)

    Google Scholar 

  22. Robba P. (1985) Indice d’un opérateur différentiel p-adique. IV. Cas des systèmes. Mesure de l’irrégularité dans un disque. Ann. Inst. Fourier (Grenoble) 35(2): 13–55

    MATH  MathSciNet  Google Scholar 

  23. Serre J.P.: Corps locaux. Publications de l’Institut de Mathématique de l’Université de Nancago, VIII. Actualités Sci. Indust. no. 1296. Hermann, Paris (1962)

  24. Springer T.A., (1998) Linear algebraic groups, volume 9 of Progress in Mathematics 2nd edn. Birkhäuser Boston Inc., Boston

    Google Scholar 

  25. Tsuzuki N. (1998) Finite local monodromy of overconvergent unit-root F-isocrystals on a curve. Am. J. Math. 120(6): 1165–1190

    Article  MATH  MathSciNet  Google Scholar 

  26. Tsuzuki N. (1998) The local index and the Swan conductor. Compos. Math. 111(3): 245–288

    Article  MATH  MathSciNet  Google Scholar 

  27. van der Put M., Singer M.F. (2003) Galois theory of linear differential equations, volume 328 of Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences). Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Pulita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pulita, A. Rank one solvable p-adic differential equations and finite Abelian characters via Lubin–Tate groups. Math. Ann. 337, 489–555 (2007). https://doi.org/10.1007/s00208-006-0040-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-006-0040-8

Keywords

Navigation