Skip to main content
Log in

Cartan decomposition of the moment map

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We investigate a class of actions of real Lie groups on complex spaces. Using moment map techniques we establish the existence of a quotient and a version of Luna’s slice theorem as well as a version of the Hilbert–Mumford criterion. A global slice theorem is proved for proper actions. We give new proofs of results of Mostow on decompositions of groups and homogeneous spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels H. (1975). Parallelizability of proper actions, global K-slices and maximal compact subgroups. Math. Ann. 212:1–19

    Article  MathSciNet  Google Scholar 

  2. Azad, H., Loeb, J.J.: Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces. Indag. Math. N.S. 3–4, 365–375 (1992).

    Google Scholar 

  3. Azad H., Loeb J.J. (1993). Plurisubharmonic functions and the Kempf–Ness Theorem. Bull. Lond. Math. Soc. 25:162–168

    MATH  MathSciNet  Google Scholar 

  4. Azad H., Loeb J.J. (1999).Some applications of plurisubharmonic functions to orbits of real reductive groups. Indag. Math. N.S. 10: 473–482

    Article  MATH  MathSciNet  Google Scholar 

  5. Birkes D. (1971). Orbits of linear algebraic groups. Ann. Math. 93:459–475

    Article  MATH  MathSciNet  Google Scholar 

  6. Chevalley C. (1946). Theory of Lie Groups. Princeton University Press, Princeton

    MATH  Google Scholar 

  7. Guillemin V., Stenzel M. (1991). Grauert tubes and the homogeneous Monge-Ampère equation I. J. Diff. Geom. 34:561–570

    MATH  MathSciNet  Google Scholar 

  8. Heinzner P. (1991). Geometric invariant theory on Stein spaces. Math. Ann. 289:631–662

    Article  MATH  MathSciNet  Google Scholar 

  9. Heinzner P. (1993). Equivariant holomorphic extensions of real analytic manifolds. Bull. Soc. Math. France 121:445–463

    MATH  MathSciNet  Google Scholar 

  10. Heinzner P., Huckleberry A. (1996). Kählerian potentials and convexity properties of the moment map. Invent. Math. 126:65–84

    Article  MATH  MathSciNet  Google Scholar 

  11. Heinzner, P., Huckleberry, A.:Complex geometry of Hamiltonian actions (to appear)

  12. Heinzner, P., Huckleberry, A., Kutzschebauch, F.: A real analytic version of Abels’ theorem and complexifications of proper Lie group actions. In: Complex Analysis and Geometry (Trento, 1993), Lecture Notes in Pure and Applied Mathematics 173, pp. 229–273 Dekker, New York (1996)

  13. Heinzner P., Huckleberry A., Loose F. (1994). Kählerian extensions of the symplectic reduction. J. Reine und Angew. Math. 455:123–140

    MATH  MathSciNet  Google Scholar 

  14. Heinzner P., Loose F. (1994). Reduction of complex Hamiltonian G-spaces. Geom. Funct. Anal. 4:288–297

    Article  MATH  MathSciNet  Google Scholar 

  15. Heinzner P., Migliorini L., Polito M. (1998). Semistable quotients. Ann. Scuola Norm. Sup. Pisa 26:233–248

    MATH  MathSciNet  Google Scholar 

  16. Heinzner, P., Stötzel, H.: Semistable points with respect to real forms. (preprint, 2005)

  17. Helgason S. (1978). Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York

    MATH  Google Scholar 

  18. Hochschild G. (1965). The structure of Lie groups. Holden-Day, San Francisco

    MATH  Google Scholar 

  19. Kempf, G., Ness, L.: The length of vectors in representation spaces. In: Lecture Notes in Math vol. 732, pp. 233–243 Springer, Berlin Heidelberg New York (1978)

  20. Kirwan F. (1984). Cohomology of quotients in symplectic and algebraic geometry. Mathematical Notes vol. 31. Princeton University Press, Princeton

    MATH  Google Scholar 

  21. Lempert L., Szöke R. (1991). Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds. Math. Ann. 290:689–712

    Article  MATH  MathSciNet  Google Scholar 

  22. Luna D. (1973). Slices étales. Bull. Soc. Math. France, Mémoire 33: 81–105

    MATH  Google Scholar 

  23. Luna D. (1975). Sur certaines opérations différentiables des groupes de Lie. Am. J. Math. 97:172–181

    Article  MATH  MathSciNet  Google Scholar 

  24. Mostow G.D. (1955). Some new decomposition theorems for semisimple groups. Memoirs Am. Math. Soc. 14:31–54

    MATH  MathSciNet  Google Scholar 

  25. Mostow G.D. (1955). On covariant fiberings of Klein spaces. Am. J. Math. 77:247–278

    Article  MATH  MathSciNet  Google Scholar 

  26. Mumford D., Fogarty J., Kirwan F. (1994). Geometric invariant theory, 3rd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete 34. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  27. Narasimhan R. (1962). The Levi problem for complex spaces, II. Math. Ann. 146:195–216

    Article  MATH  MathSciNet  Google Scholar 

  28. O’Shea L., Sjamaar R. (2000). Moment maps and Riemannian symmetric pairs. Math. Ann. 317:415–457

    Article  MathSciNet  MATH  Google Scholar 

  29. Palais R.S. (1961). On the existence of slices for actions of non-compact Lie groups. Ann. Math. 73:295–323

    Article  MATH  MathSciNet  Google Scholar 

  30. Richardson R.W., Slodowy P. (1990). Minimum vectors for real reductive algebraic groups. J. Lond. Math. Soc. 42:409–429

    MATH  MathSciNet  Google Scholar 

  31. Schwarz, G.W.: The topology of algebraic quotients. In: Kraft, H. et al. (eds.) Topological methods in algebraic transformation groups. Progress in Mathematics vol. 80, pp. 135–152 Birkhäuser Verlag, Basel-Boston (1989)

  32. Sjamaar R. (1995). Holomorphic slices, symplectic reduction and multiplicities of representations. Ann. Math. 141(2):87–129

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Heinzner.

Additional information

First author partially supported by the Sonderforschungsbereich SFB/TR12 of the Deutsche Forschungsgemeinschaft and the DFG Schwerpunk program Globale Methoden in der komplexen Geometrie.

Second author partially supported by NSA grant H98230–04–01–0070.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinzner, P., Schwarz, G.W. Cartan decomposition of the moment map. Math. Ann. 337, 197–232 (2007). https://doi.org/10.1007/s00208-006-0032-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-006-0032-8

Mathematics Subject Classification (2000)

Navigation