Skip to main content
Log in

Symplectic tori in rational elliptic surfaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let E(1) p denote the rational elliptic surface with a single multiple fiber f p of multiplicity p. We construct an infinite family of homologous non-isotopic symplectic tori representing the primitive 2-dimensional homology class [f p ] in E(1) p when p>1. As a consequence, we get infinitely many non-isotopic symplectic tori in the fiber class of the rational elliptic surface . We also show how these tori can be non-isotopically embedded as homologous symplectic submanifolds in other symplectic 4-manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchdahl, N.: On compact Kähler surfaces. Ann. Inst. Fourier, Grenoble 49, 287–302 (1999)

    MATH  MathSciNet  Google Scholar 

  2. Demailly, J.-P.: E-mail communication to the second author on 25 July 2005

  3. Demailly, J.-P., Paun, M.: Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. Math. 159, 1247–1274 (2004)

    MATH  MathSciNet  Google Scholar 

  4. Etgü, T., Park, B.D.: Non-isotopic symplectic tori in the same homology class. Trans. Amer. Math. Soc. 356, 3739–3750 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Etgü, T., Park, B.D.: Homologous non-isotopic symplectic tori in a K3 surface. Commun. Contemp. Math. 7, 325–340 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Etgü, T., Park, B.D.: Homologous non-isotopic symplectic tori in homotopy rational elliptic surfaces. Math. Proc. Cambridge Philos. Soc. (to appear)

  7. Fintushel, R., Stern, R.J.: Rational blowdown of smooth 4-manifolds. J. Differential Geom. 46, 181–235 (1997)

    MATH  MathSciNet  Google Scholar 

  8. Fintushel, R., Stern, R.J.: Knots, links and 4-manifolds. Invent. Math. 134, 363–400 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fintushel, R., Stern, R.J.: Symplectic surfaces in a fixed homology class. J. Differential Geom. 52, 203–222 (1999)

    MATH  MathSciNet  Google Scholar 

  10. Freedman, M.H., Quinn, F.: Topology of 4-Manifolds. Princeton University Press, Princeton, NJ, 1990

  11. Friedman, R.: Vector bundles and SO(3)-invariants for elliptic surfaces. J. Amer. Math. Soc. 8, 29–139 (1995)

    Article  Google Scholar 

  12. Friedman, R., Morgan, J.W.: Smooth Four-Manifolds and Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) vol. 27, Springer-Verlag, Berlin, 1994

  13. Gompf, R.E., Stipsicz, A.I.: 4-Manifolds and Kirby Calculus. Graduate Studies in Mathematics vol. 20, Amer. Math. Soc., Providence, RI, 1999

  14. Kodaira, K., Spencer, D.C.: On deformations of complex analytic structures, III. Stability theorems for complex structures. Ann. Math. 71, 43–76 (1960)

    MATH  MathSciNet  Google Scholar 

  15. Lamari, A.: Le cône kählérien d'une surface. J. Math. Pures Appl. 78, 249–263 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li, T.J., Liu, A.: Symplectic structure on ruled surfaces and a generalized adjunction formula. Math. Res. Lett. 2, 453–471 (1995)

    MATH  MathSciNet  Google Scholar 

  17. Matumoto, T.: Extension problem of diffeomorphisms of a 3-torus over some 4-manifolds. Hiroshima Math. J. 14, 189–201 (1984)

    MATH  MathSciNet  Google Scholar 

  18. McDuff, D.: From symplectic deformation to isotopy. In: Topics in Symplectic 4-Manifolds (Irvine, CA, 1996), pp. 85–99, Int. Press Lect. Ser. vol. 1, International Press, Cambridge, MA, 1998

  19. McMullen, C.T., Taubes, C.H.: 4-manifolds with inequivalent symplectic forms and 3-manifolds with inequivalent fibrations. Math. Res. Lett. 6, 681–696 (1999)

    MATH  MathSciNet  Google Scholar 

  20. Morton, H.R.: The multivariable Alexander polynomial for a closed braid. In: Low-dimensional Topology (Funchal, 1998), pp. 167–172, Contemp. Math. vol. 233, Amer. Math. Soc., Providence, RI, 1999

  21. Park, B. D.: A gluing formula for the Seiberg-Witten invariant along T 3. Michigan Math. J. 50, 593–611 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ruan, Y.: Symplectic topology and complex surfaces. In: Geometry and Analysis on Complex Manifolds, pp. 171–197, World Sci. Publishing, River Edge, NJ, 1994

  23. Siebert, B., Tian, G.: On the holomorphicity of genus two Lefschetz fibrations. Ann. Math. 161, 955–1016 (2005)

    Article  MathSciNet  Google Scholar 

  24. Sikorav, J.-C.: The gluing construction for normally generic J-holomorphic curves. In: Symplectic and Contact Topology: Interactions and Perspectives (Toronto, ON/Montréal, QC, 2001), pp. 175–199, Fields Inst. Commun. vol. 35, Amer. Math. Soc., Providence, RI, 2003

  25. Symington, M.: Symplectic rational blowdowns. J. Differential Geom. 50, 505–518 (1998)

    MATH  MathSciNet  Google Scholar 

  26. Taubes, C.H.: The Seiberg-Witten invariants and 4-manifolds with essential tori. Geom. Topol. 5, 441–519 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Vidussi, S.: Smooth structure of some symplectic surfaces. Michigan Math. J. 49, 325–330 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vidussi, S.: Nonisotopic symplectic tori in the fiber class of elliptic surfaces. J. Symplectic Geom. 2, 207–218 (2004)

    MATH  MathSciNet  Google Scholar 

  29. Vidussi, S.: Symplectic tori in homotopy E(1)'s. Proc. Amer. Math. Soc. 133, 2477–2481 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Doug Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etgü, T., Park, B. Symplectic tori in rational elliptic surfaces. Math. Ann. 334, 679–691 (2006). https://doi.org/10.1007/s00208-005-0724-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-005-0724-5

Mathematics Subject Classification (2000)

Navigation