Advertisement

Mathematische Annalen

, Volume 334, Issue 3, pp 643–678 | Cite as

Global comparison of perturbed Green functions

  • Wolfhard HansenEmail author
Article

Abstract

Given a Green function G (e.g. with respect to (−Δ) α /2, 0<α≤2) on a region X where G has a generalized triangle property and given a (G-bounded) signed measure μ on X, necessary and sufficient conditions are given for the existence of a perturbed Green function which is comparable with G. This is done in the general setting of measurable spaces. Applications to C 1,1-regions in R d and, for the classical case α=2, to finitely connected regions in ℝ2 are given.

Keywords

General Setting Green Function Measurable Space Classical Case Global Comparison 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aikawa, H.: Norm estimate of Green operator, perturbation of Green function and integrability of superharmonic functions. Math. Ann. 312(2), 289–318 (1998)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Blumenthal, R.M., Getoor, R.K., Ray, D.B.: On the distribution of first hits for the symmetric stable processes. Trans. Amer. Math. Soc. 99, 540–554 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bliedtner, J., Hansen, W.: Potential Theory – An Analytic and Probabilistic Approach to Balayage. Universitext. Springer, Berlin-Heidelberg-New York-Tokyo, 1986Google Scholar
  4. 4.
    Bogdan, K.: Sharp estimates for the Green function in Lipschitz domains. J. Math. Anal. Appl. 243(2), 326–337 (2000)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Conway, J.B.: Functions of one complex variable. II, volume 159 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1995Google Scholar
  6. 6.
    Chen, Z.Q., Song, R.: Estimates on Green functions and Poisson kernels for symmetric stable processes. Math. Ann. 312(3), 465–501 (1998)CrossRefGoogle Scholar
  7. 7.
    Chen, Z.Q., Song, R.: General gauge and conditional gauge theorems. Ann. Probab. 30(3), 1313–1339 (2002)Google Scholar
  8. 8.
    Chung, K.L., Zhao, Z.X.: From Brownian motion to Schrödinger's equation, volume 312 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1995Google Scholar
  9. 9.
    Hansen, W: Normalized solutions of Schrödinger equations with potentially bounded measures. Potential Analysis 21, 99–135 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Hansen, W.: Harnack inequalities for Schrödinger operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 413–470 (1999)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Heinonen, J.: Lectures on analysis on metric spaces. Springer-Verlag, New York, 2001Google Scholar
  12. 12.
    Hansen, W., Hueber, H.: The Dirichlet problem for sub-Laplacians on nilpotent Lie groups–-geometric criteria for regularity. Math. Ann. 276(4), 537–547 (1987)CrossRefGoogle Scholar
  13. 13.
    Hansen, W., Ma, Z.M.: Perturbation by differences of unbounded potentials. Math. Ann. 287, 553–569 1990Google Scholar
  14. 14.
    Kulczycki, T.: Properties of Green function of symmetric stable processes. Probab. Math. Statist. 17(2 Acta Univ. Wratislav. No. 2029), 339–364 (1997)Google Scholar
  15. 15.
    Meyer, P.-A.: Probability and potentials. Blaisdell Publishing Co. Ginn and Co. Waltham, Mass.-Toronto, Ont.-London, 1966Google Scholar
  16. 16.
    Murata, M.: Semismall perturbations in the Martin theory for elliptic equations. Israel J. Math. 102, 29–60 (1997)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Pinchover, Y.: Maximum and anti-maximum principles and eigenfunctions estimates via perturbation theory of positive solutions of elliptic equations. Math. Ann. 314(3), 555–590 (1999)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Ransford, T.: Potential theory in the complex plane, Volume 28 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1995Google Scholar
  19. 19.
    Riahi, L.: The 3G-inequality for general Schrödinger operators on Lipschitz domains. Manuscripta Math. 116, 211–227 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Selmi, M.: Inequalities for Green functions in a Dini-Jordan domain in R 2. Potential Anal. 13(1), 81–102 (2000)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Zhao, Z.X.: Green function for Schrödinger operator and conditioned Feynman-Kac gauge. J. Math. Anal. Appl. 116(2), 309–334 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations