Skip to main content
Log in

Segal-Bargmann transforms associated with finite Coxeter groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Using a polarization of a suitable restriction map, and heat-kernel analysis, we construct a generalized Segal-Bargmann transform associated with every finite Coxeter group G on ℝN. We find the integral representation of this transform, and we prove its unitarity. To define the Segal-Bargmann transform, we introduce a Hilbert space of holomorphic functions on with reproducing kernel equal to the Dunkl-kernel. The definition and properties of extend naturally those of the well-known classical Fock space. The generalized Segal-Bargmann transform allows to exhibit some relationships between the Dunkl theory in the Schrödinger model and in the Fock model. Further, we prove a branching decomposition of as a unitary -module and a general version of Hecke's formula for the Dunkl transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform, Part I. Comm. Pure Appl. Math. 14, 187–214 (1961)

    MATH  MathSciNet  Google Scholar 

  2. Ben Saïd, S.: On a unitary representation of the universal covering group of SL(2,ℝ). Preprint

  3. Ben Saïd, S., Ørsted, B.: Bessel functions related to root systems via the trigonometric setting. Int. Math. Res. Not. 9, 551–585 (2005)

    Article  MATH  Google Scholar 

  4. Ben Saïd, S., Ørsted, B.: The wave equation for Dunkl operators. To appear in Indag. Math. 16 no.4, (2005)

  5. Ben Saïd, S., Ørsted, B.: On Fock spaces and SL(2)-triples for the Dunkl operators. To appear in Sémin. Congr., Soc. Math. France, Paris, 2005

  6. Calogero, F.: Solution of the one-dimensional n-body problem. J. Math. Phys. 12, 419–436 (1971)

    Article  MathSciNet  Google Scholar 

  7. Cholewinski, F.M.: Generalized Fock spaces and associated operators. SIAM J. Math. Anal. 15, 177–202 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Davidson, M., Ólafsson, G., Zhang, G.: Segal-Bargmann transform on Hermitian symmetric spaces. J. Funct. Anal. 204, 157–195 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Davies, E.B.: Spectral theory and differential operators. Cambridge University Press, 1995

  10. van Dijk, G., Molchanov, M.F.: The Berezin form for rank one para-Hermitian symmetric spaces. J. Math. Pures Appl. 77, 747–799 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dunford, N., Schwartz, J.T.: Linear operators: Part II. Spectral theory. Self adjoint operators in Hilbert space. Interscience Publishers John Wiley and Sons New York-London, 1963

  12. Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311, 167–183 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dunkl, C.F.: Reflection groups and othogonal polynomials on the sphere. Math. Z. 197, 33–60 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dunkl, C.F.: Integral kernels with reflection group invariance. Canad. J. Math. 43, 1213–1227 (1991)

    MATH  MathSciNet  Google Scholar 

  15. Dunkl, C.F.: Hankel transforms associated to finite reflection groups. Proc. of the special session on hypergeometric functions on domains of positivity, Jack polynomials and applications. Proceedings, Tampa 1991, Contemp. Math. 138, 123–138 (1992)

  16. Dunkl, C.F.: Intertwining operators associated to the group S 3. Trans. Am. Math. Soc. 347, 3347–3374 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dunkl, C.F., de Jeu, M.F., Opdam, E.: Singular polynomials for finite reflection groups. Trans. Am. Math. Soc. 346, 237–256 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dunkl, C.F., Xu, Y.: Orthogonal polynomials of several variables. Cambridge Univ. Press, 2001

  19. Etingof, P., Ginzburg, V.: Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism. Invent. Math. 147, 243–348 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Folland, G.B.: Harmonic analysis in phase space. Princeton University Press, Princeton N. J., 1989

  21. Hall, B.C.: The Segal-Bargmann ``Coherent State'' transform for compact Lie groups. J. Funct. Anal. 112, 103–151 (1994)

    Article  Google Scholar 

  22. Heckman, G.J.: A remark on the Dunkl differential-difference operators. Harmonic analysis on reductive groups, W. Barker, P. Sally (eds.). Progress in Math. 101, Birkhäuser, 1991, pp. 181–191

  23. Howe, R.: On the role of the Heisenberg group in harmonic analysis. Bull. Am. Math. Soc. 3, 821–843 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  24. Howe, R.: Remarks on classical invariant theory. Trans. Am. Math. Soc. 313, 539–570 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. de Jeu, M.F.: The Dunkl transform. Invent. Math. 113, 147–162 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lyakhov, L.N.: Spherical weighted-harmonic functions and singular pseudodifferential operators. Diff. Equa. 21, 693–703 (1985)

    MATH  MathSciNet  Google Scholar 

  27. Macdonald, I.G.: Some conjectures for root systems. SIAM J. Math. An. 13, 988–1007 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ólafsson, G., Ørsted, B.: Generalization of the Bargmann transform. Lie theory and its applications in physics (Clausthal, 1995), World Sci. Publishing, River Edge, N.J., 1996, pp. 3–14

  29. Olshanetsky, M.A., Perelomov, A.M.: Completely integrable Hamiltonian systems connected with semisimple Lie algebras. Invent. Math. 37, 93–108 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  30. Opdam, E.: Root systems and hypergeometric functions. IV. Compositio Math. 67, 191–209 (1988)

    MATH  MathSciNet  Google Scholar 

  31. Opdam, E.: Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group. Compositio Math. 85, 333–373 (1993)

    MATH  MathSciNet  Google Scholar 

  32. Opdam, E.: Some applications of hypergeometric shift operators. Inv. Math. 98, 1–18 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ørsted, B., Zhang, G.: Weyl quantization and tensor products of Fock and Bergman spaces. Indiana Univ. Math. J. 43, 551–583 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  34. Reed, M., Simon, B.: Methods of modern mathematical physics: I. Functional analysis. Academic Press, New York, 1972

  35. Rosenblum, M.: Generalized Hermite polynomials and the Bose-like oscillator calculus. Operator Theory: Advances and Applications 73, Basel, Birkhäuser Verlag, 1994, pp. 369–396

  36. Rösler, M.: Dunkl operators: theory and applications. Orthogonal polynomials and special functions, E.K. Koelink, W. van Assche (eds.), Spring Lecture Notes in Math. 1817, 93–136 (2003)

    MATH  Google Scholar 

  37. Rösler, M.: Generalized Hermite polynomials and the heat equation for Dunkl operators. Comm. Math. Phys. 192, 519–542 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Rösler, M.: Contributions to the theory of Dunkl operators. Habilitations Thesis, TU München, 1999

  39. Segal, I.E.: Mathematical problems of relativistic physics. Am. Math. Soc., Providence, R. I., 1963

  40. Sobolev, S.L.: Vvedenie v teoriyu kubaturnykh formul. (Russian) [Introduction to the theory of cubature formulas], Izdat. ``Nauka'', Moscow, 1974

  41. Sifi, M., Soltani, F.: Generalized Fock spaces and Weyl relations for the Dunkl kernel on the real line. J. Math. Anal. Appl. 270, 92–106 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Soltani, F.: Generalized Fock spaces and Weyl commutation relations for the Dunkl kernel. Pacific J. Math. 214, 379–397 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  43. Xu, Y.: Orthogonal polynomials for a family of product weight functions on the spheres. Canad. J. Math. 49, 175–192 (1997)

    MATH  MathSciNet  Google Scholar 

  44. Zhang, G.: Branching coefficients of holomophic representations and Segal-Bargmann transform. J. Funct. Anal. 195, 306–349 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salem Ben Saïd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saïd, S., Ørsted, B. Segal-Bargmann transforms associated with finite Coxeter groups. Math. Ann. 334, 281–323 (2006). https://doi.org/10.1007/s00208-005-0718-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-005-0718-3

Mathematics Subject Classification (2000)

Navigation