Advertisement

Mathematische Annalen

, Volume 333, Issue 4, pp 859–931 | Cite as

The logarithmic cotangent complex

  • Martin C. OlssonEmail author
Article

Abstract

We define the cotangent complex of a morphism of fine log schemes, prove that it is functorial, and construct under certain restrictions a transitivity triangle. We also discuss its relationship with deformation theory.

Keywords

Deformation Theory Cotangent Complex Transitivity Triangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie des topos et cohomologie étale des schémas. Lecture Notes in Math. 269, 270, 305, Springer-Verlag, Berlin, 1972Google Scholar
  2. 2.
    Berthelot, P.: Cohomologie cristalline des schémas de caractéristique p>0. Lecture Notes in Math. 407, Springer-Verlag, Berlin, 1974Google Scholar
  3. 3.
    Dieudonné, J., Grothendieck, A.: Éléments de géométrie algébrique. Inst. Hautes Études Sci. Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32, 1961–1967Google Scholar
  4. 4.
    Goerss, P., Jardine, J.: Simplicial homotopy theory. Progress in Math. 174, Birkhauser, 1999Google Scholar
  5. 5.
    Grothendieck, A.: Revetements Étales et Groupe Fondamental. Lecture Notes in Mathematics 224, Springer–Verlag, Berlin, 1971Google Scholar
  6. 6.
    Grothendieck, A.: Catégories cofibrées additives et Complexe cotangent relatif. Lecture Notes in Mathematics 79, Springer–Verlag, Berlin, 1968Google Scholar
  7. 7.
    Hovey, M.: Model categories. Mathematical Surveys and Monographs 63, Am. Math. Soc., Providence, 1999Google Scholar
  8. 8.
    Illusie, L.: Complexe cotangent et déformations. I. Lecture Notes in Mathematics 239, Springer-Verlag, Berlin, 1971Google Scholar
  9. 9.
    Illusie, L.: Complexe cotangent et déformations. II. Lecture Notes in Mathematics 283, Springer-Verlag, Berlin, 1972Google Scholar
  10. 10.
    Kato, F.: Log smooth deformation theory. Tohoku Math. J. (2) 48(3), 317–354 (1996)Google Scholar
  11. 11.
    Kato, K.: Logarithmic structures of Fontaine-Illusie. Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191–224Google Scholar
  12. 12.
    Kato, K., Saito, T.: On the conductor formula of Bloch. Inst. Hautes Études Sci. Publ. Math. 100, 5–151 (2004)CrossRefGoogle Scholar
  13. 13.
    Laumon, G., Moret-Bailly, L.: Champs algébriques. Ergebnisse der Mathematik 39, Springer-Verlag, Berlin, 2000Google Scholar
  14. 14.
    Li, J.: A degeneration formula of GW–invariants. J. Diff. Geom. 60, 199–293 (2002)Google Scholar
  15. 15.
    Olsson, M.: Deformation theory of representable morphisms of algebraic stacks. To appear in Math. Zeit.Google Scholar
  16. 16.
    Olsson, M.: Logarithmic geometry and algebraic stacks. Ann. Sci. École Norm. Sup. 36, 747–791 (2003)Google Scholar
  17. 17.
    Olsson, M.: Sheaves on Artin stacks. Preprint, 2005Google Scholar
  18. 18.
    Quillen D.: On the (co)-homology of commutative rings. Proceedings of Symposia in Pure Mathematics 17 65–87, (1970).Google Scholar
  19. 19.
    Quillen. D.: Homotopical Algebra. Lecture Notes in Mathematics 43, Springer-Verlag, Berlin, 1967.Google Scholar
  20. 20.
    Quillen D.: On the group completion of a simplicial monoid. Appendix to Filtrations on the homology of algebraic varieties, by E. Friedlander and B. Mazur. Memoirs AMS 529 (1994).Google Scholar
  21. 21.
    Siebert, B.: Work in progressGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations