Advertisement

Mathematische Annalen

, Volume 334, Issue 3, pp 557–607 | Cite as

Polyhedral divisors and algebraic torus actions

  • Klaus AltmannEmail author
  • Jürgen Hausen
Article

Abstract

We provide a complete description of normal affine varieties with effective algebraic torus action in terms of what we call proper polyhedral divisors on semiprojective varieties. Our approach extends classical cone constructions of Dolgachev, Demazure and Pinkham to the multigraded case, and it comprises the theory of affine toric varieties.

Mathematics Subject Classification (2000)

14L24 14L30 14M25 13A50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arzhantsev, I.V.: On actions of reductive groups with one-parameter family of spherical orbits. Sbornik: Mathematics 188(5), 3–20 (1997)MathSciNetGoogle Scholar
  2. 2.
    Berchtold, F., Hausen, J.: GIT-equivalence beyond the ample cone. Preprint, math.AG/0503107Google Scholar
  3. 3.
    Bourbaki, N.: Commutative Algebra, Chapters 1–7. Springer Verlag, Berlin, Heidelberg, 1989Google Scholar
  4. 4.
    Brion. M., Procesi, C.: Action d'une tore dans une variété projective. In: Connes, A. et al. (eds), Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory. Progress in Mathematics, Vol. 192, Birkhäuser, Basel 1990, pp. 509–539Google Scholar
  5. 5.
    Demazure, M.: Anneaux gradués normaux. Trav. Cours 37, 35–68 (1988)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Dolgachev, I.V.: Automorphic forms and quasihomogeneous singularities. Func. Anal. Appl. 9, 149–151 (1975)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dolgachev, I.V., Hu, Y.: Variation of geometric invariant theory quotients. (With an appendix: ``An example of a thick wall'' by N. Ressayre). Publ. Math., Inst. Hautes Etud. Sci. 87, 5–56 (1998)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Flenner, H., Zaidenberg, M.: Normal affine surfaces with Open image in new window-actions. Osaka Math. J. 40, 981–1009 (2003)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Fulton, W.: Introduction to toric varieties. The William H. Roever Lectures in Geometry, Princeton University Press, 1993Google Scholar
  10. 10.
    Grünbaum, B.: Convex Polytopes. 2nd Edition. Graduate Texts in Mathematics 221, Springer-Verlag, 2003Google Scholar
  11. 11.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics 52, Springer-Verlag, 1977Google Scholar
  12. 12.
    Hausel, T., Sturmfels, B.: Toric Hyperkähler Varieties. Documenta Math. 7, 495–534 (2002)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Hu, Y., Keel, S.: Mori dream spaces and GIT. Michigan Math. J. 48, 331–348 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Humphreys, J.E.: Linear Algebraic Groups. Springer-Verlag, Berlin-Heidelberg-New York, 1975Google Scholar
  15. 15.
    Kapranov, M.M., Sturmfels, B., Zelevinsky, A.V.: Quotients of Toric Varieties. Math. Ann. 290, 643–655 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Karshon, Y., Tolman, S.: Complete Invariants for Hamiltonian Torus Actions with Two Dimensional Quotients. Eprint arXiv:math.SG/0202167 v2Google Scholar
  17. 17.
    Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal Embeddings I. Lecture Notes in Mathematics 339, Springer-Verlag, Berlin-Heidelberg-New York, 1973Google Scholar
  18. 18.
    Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. With colloaboration of C.H. Clemens and H. Corti. Cambridge University Press, 1998Google Scholar
  19. 19.
    Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory; third enlarged edition. Springer, Berlin, Heidelberg, 1994Google Scholar
  20. 20.
    Oda, T.: Convex Bodies and Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 15. Springer Verlag, 1988Google Scholar
  21. 21.
    Oda, T., Park, H.S.: Linear Gale Transfroms and Gelfand-Kapranov-Zelevinskij Decompositions. Tôhoku Math. J. 43, 375–399 (1991)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Pinkham, H.: Normal surface singularities with Open image in new window-action. Math. Ann. 227, 183–193 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Reid, M.: Decomposition of toric morphisms. In: Arithmetic and Geometry, Vol. II, M. Artin, J. Tate, (eds.), Birkhäuser, Basel, 1983Google Scholar
  24. 24.
    Ressayre, N.: The GIT-equivalence for G-line bundles. Geom. Dedicata 81(1–3), 295–324 (2000)Google Scholar
  25. 25.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton N.J., 1970Google Scholar
  26. 26.
    Specker, E.: Additive Gruppen von Folgen ganzer Zahlen. Portugaliae Math. 9(3), 131–140 (1950)MathSciNetGoogle Scholar
  27. 27.
    Thaddeus, M.: Geometric invariant theory and flips. J. Amer. Math. Soc. 9, 691–723 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Timashev, D.A.: Classification of G-varieties of complexity 1. Izv. Math. 61:2, 363–397 (1997)Google Scholar
  29. 29.
    Vollmert, R.: One-Codimensional Torus Actions. Diploma thesis 2005, FU BerlinGoogle Scholar
  30. 30.
    Zariski, O.: The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface. Ann. Math. 76, 561–615 (1962)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Fachbereich Mathematik und InformatikFreie Universität BerlinBerlinGermany
  2. 2.Mathematisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations