Advertisement

Mathematische Annalen

, Volume 334, Issue 3, pp 533–555 | Cite as

Algebraic invariants for right-angled Artin groups

  • Stefan Papadima
  • Alexander I. SuciuEmail author
Article

Abstract

A finite simplicial graph Γ determines a right-angled Artin group G Γ, with generators corresponding to the vertices of Γ, and with a relation υw=wυ for each pair of adjacent vertices. We compute the lower central series quotients, the Chen quotients, and the (first) resonance variety of G Γ, directly from the graph Γ.

Mathematics Subject Classification (2000)

Primary: 20F36 13F55 20F14 55P62 57M07 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aramova, A., Avramov, L., Herzog, J.: Resolutions of monomial ideals and cohomology over exterior algebras. Trans. Amer. Math. Soc. 352, 579–594 (1999)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aramova, A., Herzog, J., Hibi, T.: Gotzmann theorems for exterior algebras and combinatorics. J. Algebra 191, 174–211 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bestvina, M., Brady, N.: Morse theory and finiteness properties of groups. Invent. Math. 129(3), 445–470 (1997)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bieri, R., Neumann, W., Strebel, R.: A geometric invariant of discrete groups. Invent. Math. 90(3), 451–477 (1987)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Charney, R., Davis, M.: Finite K(π, 1)s for Artin groups, Prospects in topology (Princeton, NJ, 1994), Ann. Math. Stud., Vol. 138, Princeton Univ. Press, Princeton, NJ, 1995, pp. 110–124Google Scholar
  6. 6.
    Duchamp, G., Krob, D.: The free partially commutative Lie algebra: bases and ranks, Adv. Math. 95(1), 92–126 (1992)MathSciNetGoogle Scholar
  7. 7.
    Duchamp, G., Krob, D.: The lower central series of the free partially commutative group, Semigroup Forum 45(3), 385–394 (1992)Google Scholar
  8. 8.
    Eisenbud, D., Popescu, S., Yuzvinsky, S.: Hyperplane arrangement cohomology and monomials in the exterior algebra. Trans. Am. Math. Soc. 355(11), 4365–4383 (2003)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Falk, M.: Arrangements and cohomology. Ann. Combin. 1(2), 135–157 (1997)MathSciNetGoogle Scholar
  10. 10.
    Fröberg, R.: Determination of a class of Poincaré series. Math. Scand. 37(1), 29–39 (1975)MathSciNetGoogle Scholar
  11. 11.
    Fröberg, R.: Rings with monomial relations having linear resolutions. J. Pure Appl. Algebra 38(2-3), 235–241 (1985)Google Scholar
  12. 12.
    Fröberg, R., Löfwall, C.: Koszul homology and Lie algebras with application to generic forms and points. Homology Homotopy Appl. 4(2), part 2, 227–258 (2002)Google Scholar
  13. 13.
    The GAP Group, GAP–Groups, Algorithms, and Programming, Version 4.4 (2004); available at http://www.gap-system.org.
  14. 14.
    Grayson, D., Stillman, M.: Macaulay 2: a software system for research in algebraic geometry; available at http://www.math.uiuc.edu/Macaulay2
  15. 15.
    Halperin, S., Stasheff, J.: Obstructions to homotopy equivalences. Adv. Math. 32(3), 233–279 (1979)CrossRefGoogle Scholar
  16. 16.
    Hochster, M.: Cohen-Macaulay rings, combinatorics, and simplicial complexes, in: Ring theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975), Lecture Notes in Pure and Appl. Math., Vol. 26, Dekker, New York, 1977, pp. 171–223Google Scholar
  17. 17.
    Kapovich, M., Millson, J.: On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties. Inst. Hautes Études Sci. Publ. Math. 88(8), 5–95 (1998)MathSciNetGoogle Scholar
  18. 18.
    Kim, K.H., Roush, F.W.: Homology of certain algebras defined by graphs. J. Pure Appl. Algebra 17(2), 179–186 (1980)CrossRefGoogle Scholar
  19. 19.
    Libgober, A., Yuzvinsky, S.: Cohomology of the Orlik-Solomon algebras and local systems. Compositio Math. 21(3), 337–361 (2000)MathSciNetGoogle Scholar
  20. 20.
    Meier, J., Meinert, H., VanWyk, L.: Higher generation subgroup sets and the Σ-invariants of graph groups. Comment. Math. Helv. 73(1), 22–44 (1998)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Meier, J., VanWyk, L.: The Bieri-Neumann-Strebel invariants for graph groups. Proc. London Math. Soc. (3) 71(2), 263–280 (1995)Google Scholar
  22. 22.
    Milnor, J.W., Moore, J.C.: On the structure of Hopf algebras. Ann. Math. 81, 211–264 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Papadima, S., Suciu, A.: Chen Lie algebras. International Math. Research Notices 2004(21), 1057–1086CrossRefMathSciNetGoogle Scholar
  24. 24.
    Papadima, S., Suciu, A.: Homotopy Lie algebras, lower central series, and the Koszul property. Geometry & Topology 8, 1079–1125 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Papadima, S., Suciu, A.: Algebraic invariants for Bestvina-Brady groups. Preprint, 2005Google Scholar
  26. 26.
    Papadima, S., Yuzvinsky, S.: On rational K[π,1] spaces and Koszul algebras. J. Pure Appl. Alg. 144(2), 156–167 (1999)MathSciNetGoogle Scholar
  27. 27.
    Quillen, D.: Rational homotopy theory. Ann. Math. 90, 205–295 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Renteln, P.: The Hilbert series of the face ring of a flag complex. Graphs Combin. 18(3), 605–619 (2002)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Roth, M., Van Tuyl, A.: On the linear strand of an edge ideal. Preprint, arXiv: math.AC/0411181Google Scholar
  30. 30.
    Schenck, H., Suciu, A.: Resonance, linear syzygies, Chen groups, and the Bernstein-Gelfand-Gelfand correspondence. To appear in Trans. Am. Math. Soc., available at arXiv:math.AC/0502438Google Scholar
  31. 31.
    Shelton, B., Yuzvinsky, S.: Koszul algebras from graphs and hyperplane arrangements. J. London Math. Soc. 56(3), 477–490 (1997)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Stanley, R.: Combinatorics and commutative algebra, Second edition, Progress in Mathematics, vol. 41, Birkhäuser, Boston, MA, 1996Google Scholar
  33. 33.
    Sullivan, D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47, 269–331 (1977)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Institute of Mathematics of the AcademyBucharestRomania
  2. 2.Department of MathematicsNortheastern UniversityBostonUSA

Personalised recommendations