Skip to main content
Log in

Harbater-Mumford subvarieties of moduli spaces of covers

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We define Harbater-Mumford subvarieties, which are special kinds of closed subvarieties of Hurwitz moduli spaces obtained by fixing some of the branch points. We show that, for many finite groups, finding geometrically irreducible HM-subvarieties defined over is always possible. This provides information on the arithmetic of Hurwitz spaces and applies in particular to the regular inverse Galois problem with (almost all) fixed branch points. Profinite versions of our results can also be stated, providing new tools to study the geometry of modular towers and the regular inverse Galois problem for profinite groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bailey, P., Fried, M.: Hurwitz monodromy, spin separation and higher levels of Modular Towers. Proceedings of symposia in pure mathematics, A.M.S., M. Fried and Y. Ihara ed., 2002

  2. Birman, J. S.: Braids, links and mapping class groups. Princeton University Press, 1974

  3. Cadoret, A.: Counting Galois real covers of the projective line. Pacific J. Math. 219, 101–129 (2005)

    Google Scholar 

  4. Cadoret, A.: Théorie de Galois inverse et arithmétique des espaces de Hurwitz. thèse de doctorat de l'U.S.T.L., 2004

  5. Dèbes, P.: Critère de descente pour le corps de définition des G-revêtements de ℙ1. C.R. Acad. Sci. Paris, t.315, série I, 863–868 (1992)

  6. Dèbes, P.: Covers of ℙ1 over the p-adics. in Recent Developments in the Inverse Galois Problem, Contemporary Math. 186, 217–238 (1995)

    Google Scholar 

  7. Dèbes, P.: Modular Towers. construction and diophantine questions, preprint 2004.

  8. Dèbes, P., Deschamps, B.: Corps ψ-libres et théorie inverse de Galois infinie. J. fur die reine und angew. Math. 574, 197–218 (2004)

    Google Scholar 

  9. Dèbes, P., Douai, J.-C., Moret-Bailly, L.: Descent varieties for algebraic covers. J. fur die reine und angew. Math. 574, 51–78 (2004)

    Google Scholar 

  10. Dèbes, P., Emsalem, M.: Harbater-Mumford Components and Towers of Moduli Spaces. J. Inst. Math. Jussieu, to appear.

  11. Dèbes, P., Fried, M.: Nonrigid Constructions in Galois Theory. Pacific J. Math. 163, 81–122 (1994)

    Google Scholar 

  12. Deschamps, B.: Existence de points p-adiques pour tout p sur un espace de Hurwitz. Proceedings AMS-NSF Summer Conference, 186, Cont. Math. series, Recent Developments in the Inverse Galois Problem, 111–171 (1995)

  13. Dickson, L. E.: Linear groups with an exposition of the Galois field theory. Dover, 1958

  14. Fried, M.: Introduction to Modular Towers:Generalizing the relation between dihedral groups and modular curves. Proceedings AMS-NSF Summer Conference. Cont. Math. series, Recent Developments in the Inverse Galois Problem 186, 111–171 (1995)

    Google Scholar 

  15. Fried, M., Volklein, H.: The Inverse Galois Problem and Rational Points on Moduli Spaces. Math. Ann. 290, 771–800 (1991)

    Article  Google Scholar 

  16. Green, B. W., Pop, F., Roquette, P.: On Rumely's Local-Global principle. Jber.d.Dt.Math.-Verein 97, 43–74 (1997)

    Google Scholar 

  17. Harbater, D.: Galois coverings of the arithmetic line. Lecture Notes in Math. 1240, 165–195 (1987)

    Google Scholar 

  18. Harbater, D.: Patching and Galois theory. MSRI Publications series, Cambridge University Press, 41, 313–424 (2003)

    Google Scholar 

  19. Liu, Q.: Tout groupe fini est groupe de Galois sur . Contemporary Mathematics. 186, 261–265 (1995)

    Google Scholar 

  20. Matzat, H. B.: Rationality criteria for Galois extensions. in Ihara et al., Galois groups over , Proc. Workshop Berkeley 1987, Publ. Math. Sci. Res. Inst. 16, 361–383, Springer, Berlin, Heidelberg, 1989

  21. Malle, G., Matzat, H. B.: Inverse Galois Theory. S.M.M., Springer, Berlin, Heidelberg, 1999

  22. Moret-Bailly, L.: Groupes de Picard et problèmes de Skolem II. Annales Sci. E.N.S., 22, 181–194 (1989)

    Google Scholar 

  23. Pop, F.: Half Riemann's existence theorem. Algebra and Number Theory (G.Frey and J.Ritters, eds.), De Gruyter Proceedings in Mathematics, 1–26 (1994)

  24. Pop, F.: Embedding problems over large fields. Annals of Math. 144, p. 1–35, 1996. Cambridge Studies in Advanced Mathematics, 53, Cambridge University Press, 1999

  25. Suzuki, M.: Group Theory I, II. G.M.W., 247, 248 Springer, Berlin, Heidelberg, 1986

  26. Volklein, H.: Groups as Galois groups - an introduction. Cambridge Studies in Advanced Mathematics, 53, Cambridge University Press, 1999

  27. Wewers, S.: Construction of Hurwitz Spaces. Thesis, Preprint 21 of the IEM, Essen, 1998

  28. Wielandt, H.: Finite Permutation Groups. Academic Press, 1984

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Cadoret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadoret, A. Harbater-Mumford subvarieties of moduli spaces of covers. Math. Ann. 333, 355–391 (2005). https://doi.org/10.1007/s00208-005-0680-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-005-0680-0

Mathematics Subject Classification (2000)

Navigation