Mathematische Annalen

, Volume 334, Issue 3, pp 489–531 | Cite as

Weighted Hardy inequalities for decreasing sequences and functions

  • G. Bennett
  • K.-G. Grosse-ErdmannEmail author


We obtain a complete characterization of the weights for which Hardy's inequality holds on the cone of non-increasing sequences. Our proofs translate immediately to the analogous inequality for non-increasing functions, thereby also completing the investigation in that direction. As an application of our results we characterize the boundedness of the Hardy-Littlewood maximal operator on Lorentz sequence spaces.

Mathematics Subject Classification (2000)

26D15 47B37 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ariño, M.A., Muckenhoupt, B.: Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions. Trans. Am. Math. Soc. 320, 727–735 (1990)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bennett, C., Sharpley, R.: Interpolation of operators. Academic Press, Boston, MA, 1988Google Scholar
  3. 3.
    Bennett, G.: Lower bounds for matrices. Linear Algebra Appl. 82, 81–98 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bennett, G.: Some elementary inequalities. Quart. J. Math. Oxford Ser. (2) 38, 401–425 (1987)Google Scholar
  5. 5.
    Bennett, G.: Some elementary inequalities. II. Quart. J. Math. Oxford Ser. (2) 39, 385–400 (1988)Google Scholar
  6. 6.
    Bennett, G.: Some elementary inequalities. III. Quart. J. Math. Oxford Ser. (2) 42, 149–174 (1991)Google Scholar
  7. 7.
    Bennett, G.: Factorizing the classical inequalities. Mem. Amer. Math. Soc. 120(576), 1996Google Scholar
  8. 8.
    Bennett, G., Grosse-Erdmann, K.-G.: On series of positive terms. Houston J. Math. 31, 541–586 (2005)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Bennett, G., Grosse-Erdmann K.-G.: Some remarks on Lorentz spaces. ManuscriptGoogle Scholar
  10. 10.
    Carro, M., Pick, L., Soria, J., Stepanov, V.D.: On embeddings between classical Lorentz spaces. Math. Inequal. Appl. 4, 397–428 (2001)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Connor, J.: Open problems in sequence spaces. Unpublished notes, Athens, OH, 1992Google Scholar
  12. 12.
    Grosse-Erdmann, K.-G.: The blocking technique, weighted mean operators and Hardy's inequality. Lecture Notes in Mathematics, vol. 1679, Springer-Verlag, Berlin, 1998Google Scholar
  13. 13.
    Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge, 1934Google Scholar
  14. 14.
    Heinig, H.P., Kufner, A.: Hardy operators of monotone functions and sequences in Orlicz spaces. J. London Math. Soc. (2) 53, 256–270 (1996)Google Scholar
  15. 15.
    Kalton, N.J., Peck, N.T., Roberts, J.W.: An F-space sampler. Cambridge University Press, Cambridge, 1984Google Scholar
  16. 16.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. I. Springer-Verlag, Berlin, 1977Google Scholar
  17. 17.
    Myasnikov, E.A., Persson, L.E., Stepanov, V.D.: On the best constants in certain integral inequalities for monotone functions. Acta Sci. Math. (Szeged) 59, 613–624 (1994)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Neugebauer, C.J.: Weighted norm inequalities for averaging operators of monotone functions. Publ. Mat. 35, 429–447 (1991)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces. Studia Math. 96, 145–158 (1990)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Sinnamon, G., Stepanov, V.D.: The weighted Hardy inequality: new proofs and the case p=1. J. London Math. Soc. (2) 54, 89–101 (1996)Google Scholar
  21. 21.
    Stepanov, V.D.: Boundedness of linear integral operators on a class of monotone functions. Siberian Math. J. 32, 540–542 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Stepanov, V.D.: On integral operators on the cone of monotone functions, and on embeddings of Lorentz spaces. Soviet Math. Dokl. 43, 620–623 (1991)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Stepanov, V.D.: The weighted Hardy's inequality for nonincreasing functions. Trans. Am. Math. Soc. 338, 173–186 (1993)CrossRefzbMATHGoogle Scholar
  24. 24.
    Wilansky, A.: Summability through functional analysis. North-Holland Publishing Co., Amsterdam, 1984Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Department of MathematicsIndiana UniversityBloomingtonUSA
  2. 2.Fachbereich MathematikFernuniversität HagenHagenGermany

Personalised recommendations