Mathematische Annalen

, Volume 333, Issue 2, pp 315–354 | Cite as

Three dimensional divisorial extremal neighborhoods

  • Nikolaos TziolasEmail author


In this paper we study divisorial extremal neighborhoods Open image in new window such that 0 ∈ X is a cA n type threefold terminal singularity, and Γ=f(E) is a smooth curve, where E is the f-exceptional divisor. We view a divisorial extremal neighborhood as a one parameter smoothing of certain surface singularities, and based on this we give a classification of such neighborhoods.

Mathematics Subject Classification (2000)

14E30 14E35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bingener, J.: Lokale Modulräume in den analytischen Geometrie. I-II, Friedr. Vieweg, Braunschweig, 1987Google Scholar
  2. 2.
    Brieskorn, E.: Rationale singularitäten komplexer flächen. Invent. Math. 4, 336–358 (1968)CrossRefGoogle Scholar
  3. 3.
    Corti, A.: Factoring birational maps of threefolds after Sarkisov. J. Algebraic Geometry 4, 223–254 (1995)Google Scholar
  4. 4.
    Corti, A., Reid, M.: Explicit birational geometry of 3-folds, LMN 281 2000Google Scholar
  5. 5.
    Cutkosky, S.: Elementary contractions of Gorenstein threefolds. Math. Ann. 280, 521–525 (1988)CrossRefGoogle Scholar
  6. 6.
    Jaffe, D.B.: Local geometry of smooth curves passing through rational double points. Math. Ann. 294, 645–660 (1992)CrossRefGoogle Scholar
  7. 7.
    Kawakita, M.: Divisorial contractions in dimension 3 that contract divisors to compound cA1 points. Compositio Mathematica 133, 95–116 (2002)CrossRefGoogle Scholar
  8. 8.
    Kawakita, M.: Divisorial contractions in dimension 3 that contract divisors to smooth points. Invent. Math. 145, 105-119 (2001)Google Scholar
  9. 9.
    Kawamata, Y.: Crepant blowing up of 3-dimensional canonical singularities and its application to degenerations of surfaces. Annals of Mathematics 127, 93–163 (1988)Google Scholar
  10. 10.
    Kawamata, Y.: Divisorial contractions to 3-dimensional terminal quotient singularities. In: Higher-dimensional complex varieties (Trento 1994), 241-246, de Gruyter, Berlin, 1996.Google Scholar
  11. 11.
    Kollár, J.: Singularities of pairs. Proc. Symp. Pure Math. Soc. vol 62, 1997Google Scholar
  12. 12.
    Kollár, J.: Flips, flops, minimal models, etc. Surv. in Diff. Geom. 1, 293–323 (1992)Google Scholar
  13. 13.
    Kollár, J., Shepherd-Barron, N.I.: Threefolds and deformations of surface singularities. Invent. Math. 91, 299–338 (1988)CrossRefGoogle Scholar
  14. 14.
    Kollár, J., Mori, S.: Birational geometry of algebraic varieties. Cambridge University Press, 1988Google Scholar
  15. 15.
    Kollár, J., Mori, S.: Classification of three-dimensional flips. J. Am.Math. Soc. 5(3), 533–703 (1992)Google Scholar
  16. 16.
    Lamotke,K.: Regular solids and isolated singularities. Advanced lectures in Math., Viehweg & Sohn, 1985Google Scholar
  17. 17.
    Markoe, A., Rossi, H.: Families of strongly pseudo convex manifolds. Symposium in several complex variables, Lecture Notes in Math. vol 184, 182–208 Springer, 1971Google Scholar
  18. 18.
    Mori, S.: Flip theorem and the existence of minimal models for 3-folds. J. Am.Math. Soc. 1(1), 117–253 (1988)Google Scholar
  19. 19.
    Reid, M.: Young person's guide to canonical singularities. Proc. Symp. Pure Math. Soc. vol 46, 1987Google Scholar
  20. 20.
    Shepherd-Barron, N.I.: Degenerations with numerically effective canonical divisor. Progress in Math. 29, 33–84 (1983)Google Scholar
  21. 21.
    Tziolas, N.: Terminal 3-fold divisorial contractions of a surface to a curve I. Compositio Mathematica 139(3), 239–261 (2003)CrossRefGoogle Scholar
  22. 22.
    Tziolas, N.: Open image in new window-Gorenstein smoothings of non-normal surfaces, preprint.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Max Planck Institute for Mathematics BonnGermany
  2. 2.Department of MathematicsUniversity of CreteHeraklionGreece

Personalised recommendations