Advertisement

Mathematische Annalen

, Volume 333, Issue 2, pp 291–313 | Cite as

Stability of the local gamma factor arising from the doubling method

  • Stephen Rallis
  • David Soudry
Article

Keywords

Gamma Factor Doubling Method Local Gamma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cogdell, J., Kim, H., Piatetski-Shapiro, I., Shahidi, F.: On lifting from classical groups to GLN. Publ. Math. IHES 93, 5–30 (2001)CrossRefGoogle Scholar
  2. 2.
    Cogdell, J., Kim, H., Piatetski-Shapiro, I., Shahidi, F.: Functoriality for classical groups. Publ. Math. IHES 99, 163–233 (2004)Google Scholar
  3. 3.
    Cogdell, J., Piatetski-Shapiro, I.: Stability of gamma factors for SO(2n+1). Manuscripta Math. 95, 437–461 (1998)CrossRefGoogle Scholar
  4. 4.
    Cogdell, J., Piatetski-Shapiro, I.: Converse theorems for GLn. Publ. Math. IHES 79, 157–214 (1994)Google Scholar
  5. 5.
    Cogdell, J., Piatetski-Shapiro, I., Shahidi, F.: Partial Bessel functions for quasi-split groups. To appear in a volume in honor of S. RallisGoogle Scholar
  6. 6.
    Godement, R., Jacquet, H.: Zeta functions of simple algebras. LNM 260, Springer, Berlin Heidelberg, 1972Google Scholar
  7. 7.
    Gelbart, S., Piatetski-Shapiro, I., Rallis, S.: Explicit constructions of automorphic L-functions. LNM 1254, Springer (1987)Google Scholar
  8. 8.
    Jacquet, H., Shalika, J.: A lemma on highly ramified ε-factors. Math. Ann. 271, 319–332 (1985)CrossRefGoogle Scholar
  9. 9.
    Lapid, E., Rallis, S.: On the local factors of classical groups. To appear in a volume in honor of S. RallisGoogle Scholar
  10. 10.
    Piatetski-Shapiro, I., Rallis, S.: ε factors for representations of classical groups. Proc. Nat. Acad. Sci. USA 83(13), 4589–4593 (1986)Google Scholar
  11. 11.
    Shahidi, F.: Local coefficients as Mellin transforms of Bessel functions; towards a general stability. IMRN 39, 2075–2119 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stephen Rallis
    • 1
  • David Soudry
    • 2
  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA
  2. 2.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations