Mathematische Annalen

, Volume 333, Issue 2, pp 271–290 | Cite as

Some remarks on the Schrödinger equation with a potential in L r t L s x

  • Piero D' AnconaEmail author
  • Vittoria Pierfelice
  • Nicola Visciglia


We study the dispersive properties of the linear Schrödinger equation with a time-dependent potential V(t,x). We show that an appropriate integrability condition in space and time on V, i.e. the boundedness of a suitable L r t L s x norm, is sufficient to prove the full set of Strichartz estimates. We also construct several counterexamples which show that our assumptions are optimal, both for local and for global Strichartz estimates, in the class of large unsigned potentials VL r t L s x .

Mathematics Subject Classification (2000)

35B40 35B25 35B65 35Q40 35Q55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourgain, J.: Exponential sums and nonlinear Schrödinger equations. Geom. Funct. Anal. 3(2), 157–178 (1993)CrossRefGoogle Scholar
  2. 2.
    Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3(2), 107–156 (1993)CrossRefGoogle Scholar
  3. 3.
    Bourgain, J.: Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Amer. Math. Soc. 12(1), 145–171 (1999)CrossRefGoogle Scholar
  4. 4.
    Burq, N., Gérard, P., Tzvetkov, N.: Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer. J. Math. 126(3), 569–605 (2004)Google Scholar
  5. 5.
    Cazenave, T.: Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathematics. New York University Courant Institute of Mathematical Sciences, New York, 2003Google Scholar
  6. 6.
    Costin, O., Costin, R.D., Rokhlenko, A., Lebowitz, J.: Evolution of a model quantum system under time periodic forcing: conditions for complete ionization. Comm. Math. Phys. 221(1), 1–26 (2001)CrossRefGoogle Scholar
  7. 7.
    Ginibre, J., Velo, G.: Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133(1), 50–68 (1995)CrossRefGoogle Scholar
  8. 8.
    Georgiev, V., Ivanov, A.: Existence and mapping properties of the wave operator for the Schrö dinger equation with singular potential. Preprint 2004Google Scholar
  9. 9.
    Goldberg, M., Schlag, W.: Dispersive estimates for Schrödinger operators in dimensions one and three. Preprint 2003Google Scholar
  10. 10.
    Howland, J.: Stationary scattering theory for time-dependent Hamiltonians. Math. Ann. 207, 315–335 (1974)CrossRefGoogle Scholar
  11. 11.
    Journé, J.-L., Soffer, A., Sogge, C. D.: Decay estimates for Schrödinger operators. Comm. Pure Appl. Math. 44(5), 573–604 (1991)Google Scholar
  12. 12.
    Keel, M., Tao, T.: Endpoint Strichartz estimates. Amer. J. Math. 120(5), 955–980 (1998)Google Scholar
  13. 13.
    Pierfelice, V.: Strichartz estimates for the Schrödinger and heat equations perturbed with singular and time dependent potentials. Preprint 2003Google Scholar
  14. 14.
    Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978Google Scholar
  15. 15.
    Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3), 451–513 (2004)CrossRefGoogle Scholar
  16. 16.
    Yajima, K.: Large time behaviors of time-periodic quantum systems. In: Differential equations (Birmingham, Ala., 1983), volume 92 of North-Holland Math. Stud., Amsterdam: North-Holland, 1984, pp. 589–597Google Scholar
  17. 17.
    Yajima, K.: Existence of solutions for Schrödinger evolution equations. Communications in Mathematical Physics 110(3), 415–426 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Piero D' Ancona
    • 1
    Email author
  • Vittoria Pierfelice
    • 2
  • Nicola Visciglia
    • 2
  1. 1.Università di Roma “La Sapienza”Dipartimento di MatematicaRomaItaly
  2. 2.Università di PisaDipartimento di MatematicaPisaItaly

Personalised recommendations