Skip to main content
Log in

Bochner identities for Kählerian gradients

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We discuss algebraic properties for the symbols of geometric first order differential operators on Kähler manifolds. Through a study of the universal enveloping algebra and higher Casimir elements, we know a lot of relations for the symbols, which induce Bochner identities for the operators. As applications, we have vanishing theorems, eigenvalue estimates, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Branson, T.: Harmonic analysis in vector bundles associated to the rotation and spin groups. J. Funct. Anal. 106, 314–328 (1992)

    Google Scholar 

  2. Branson, T.: Stein-Weiss operators and ellipticity. J. Funct. Anal. 151, 334–383 (1997)

    Google Scholar 

  3. Branson, T.: Nonlinear phenomena in the spectral theory of geometric linear differential operators. Proc. Sympos. Pure. Math., Am. Math. Soc., Providence, RI 59, 27–65 (1996)

    Google Scholar 

  4. Branson, T.: Second order conformal covariants. Proc. Am. Math. Soc. 126(4), 1031–1042 (1998)

    Google Scholar 

  5. Branson, T., Hijazi, O.: Vanishing theorems and eigenvalue estimates in Riemannian spin geometry. Internat. J. Math. 8, 921–934 (1997)

    Google Scholar 

  6. Branson, T., Hijazi, O.: Improved forms of some vanishing theorems in Riemannian spin geometry. Internat. J. Math. 11, 291–304 (2000)

    Google Scholar 

  7. Bureš, J.: The higher spin Dirac operators, in ‘Differential geometry and applications’. Masaryk Univ., Brno 319–334 (1999)

  8. Calderbank, D., Gauduchon, P., Herzlich, M.: Refined Kato inequalities and conformal weights in Riemannian geometry. J. Funct. Anal. 173, 214–255 (2000)

    Google Scholar 

  9. Fegan, H.D.: Conformally invariant first order differential operators. Quart. J. Math. Oxford 27, 371–378 (1976)

    Google Scholar 

  10. Gauduchon, P.: Structures de Weyl et théorèmes d’annulation sur une variété conforme autoduale. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18(4), 563–629 (1991)

    Google Scholar 

  11. Homma, Y.: Bochner-Weitzenböck formula and curvature actions on Riemannian manifolds preprint, (math.DG/0307022)

  12. Homma, Y.: Spherical harmonic polynomials for higher bundles. In: ‘Int. Conf. on Clifford Analysis, Its Appl. and Related Topics. Beijing’. Adv. Appl. Clifford Algebras 11(S2), 117–126 (2001)

    Google Scholar 

  13. Homma, Y.: Casimir elements and Bochner identities on Riemannian manifolds. Progress in Math. Phys. 34, Birkhäuser, 185–200 (2004)

  14. Koike, K.: On representation of the classical groups, in ‘Selected papers on harmonic analysis, groups, and invariants’. Am. Math. Soc. Transl. Ser. 2, Am. Math. Soc., Providence, RI 183, 79–100 (1998)

  15. Kirchberg, K.D.: An estimation for the first eigenvalues of the Dirac operator on closed Kähler manifolds of positive scalar curvature. Ann. Global Anal. Geom. 4, 291–325 (1986)

    Google Scholar 

  16. Kirchberg, K.D.: The first eigenvalue of the Dirac operator on Kähler manifolds. J. Geom. Phys. 7, 446–468 (1990)

    Google Scholar 

  17. Kirchberg, K.D.: Properties of Kählerian twistor-spinors and vanishing theorem. Math. Ann. 293, 349–369 (1992)

    Google Scholar 

  18. Kirchberg, K.D.: Holomorphic spinors and the Dirac equation. Ann. Global Anal. Geom. 17, 97–111 (1999)

    Google Scholar 

  19. Kobayashi, S., Nomizu, K.: Foundations of differential geometry I,II. Interscience, John Wiley, New York, 1963, 1969

  20. Lawson, H.B., Michelsohn, M.L.: Spin geometry. Princeton Mathematical Series, 38, 1989 Princeton University Press, Princeton, NJ

  21. Michelsohn, M.L.: Clifford and spinor cohomology of Kähler manifolds. Am. J. Math. 102, 1083–1146 (1986)

    Google Scholar 

  22. Milnor, J.W., Stasheff, J.D.: Characteristic classes. Annals of Mathematics Studies. 76, 1974, Princeton University Press, Princeton, NJ

  23. Želobenko, D.P.: Compact Lie groups and their representations. Trans. Math. Monographs. Vol 40, A.M.S. 1973

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Homma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homma, Y. Bochner identities for Kählerian gradients. Math. Ann. 333, 181–211 (2005). https://doi.org/10.1007/s00208-005-0670-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-005-0670-2

Mathematics Subject Classification (2000)

Navigation