Skip to main content
Log in

Non-connected toric Hilbert schemes

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract.

We construct small (50 and 26 points, respectively) point sets in dimension 5 whose graphs of triangulations are not connected. These examples improve our construction in J. Amer. Math. Soc. 13:3 (2000), 611–637 not only in size, but also in that the associated toric Hilbert schemes are not connected either, a question left open in that article. Additionally, the point sets can easily be put into convex position, providing examples of 5-dimensional polytopes with non-connected graph of triangulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeev, V.: Complete moduli in the presence of semiabelian group action. Ann. Math. 155(3), 611–708 (2002)

    Google Scholar 

  2. Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. In: Computing in Euclidean Geometry, D.Z. Du, F.K.H. Wang (eds.), World Scientific, 1995, pp. 47–123

  3. Billera, L., Kapranov, M.M., Sturmfels, B.: Cellular strings on polytopes. Proc. Am. Math. Soc. 122(2), 549–555 (1994)

    Google Scholar 

  4. Björner, A., Lutz, F.H.: Simplicial manifolds, bistellar flips and a 16-vertex triangulation of the Poincaré homology 3-sphere. Experiment. Math. 9, 275–289 (2000)

    Google Scholar 

  5. de Loera, J.A., Rambau, J., Santos, F.: Triangulations of polyhedra and point sets. In preparation

  6. Edelsbrunner, H., Shah, N.R.: Incremental topological flipping works for regular triangulations. Algorithmica 15, 223–241 (1996)

    Article  Google Scholar 

  7. Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston, 1994

  8. Haiman, M., Sturmfels, B.: Multigraded Hilbert Schemes. J. Algebraic Geom. 13, 725–769 (2004)

    Google Scholar 

  9. Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Comput. Geom. 22, 333–346 (1999)

    Google Scholar 

  10. Itenberg, I., Roy, M.-F.: Interactions between real algebraic geometry and discrete and computational geometry. In: Advances in discrete and computational geometry. Proceedings of the 1996 AMS-IMS-SIAM joint summer research conference on discrete and computational geometry: ten years later, Bernard Chazelle et al. (eds.), Contemp. Math. 223, Am. Math. Soc., Providence, 1999, pp. 217–236

  11. Kapranov, M.M., Sturmfels, B., Zelevinsky, A.V.: Quotients of toric varieties. Math. Ann. 290, 643–655 (1991)

    Article  Google Scholar 

  12. Lawson, C.L.: Software for C1-interpolation. In: Mathematical Software III, John Rice (ed.), Academic Press, New York, 1977

  13. Lee, C.W.: Subdivisions and triangulations of polytopes. In: Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O’Rourke (eds.), CRC Press, New York, 1997, pp. 271–290

  14. Maclagan, D., Thomas, R.: Combinatorics of the Toric Hilbert Scheme. Discrete Comput. Geom. 27, 249–264 (2002)

    Google Scholar 

  15. Peeva, I., Stillman, M.: Toric Hilbert schemes. Duke Mathematical Journal 111, 419–449 (2002)

    Article  Google Scholar 

  16. Reiner, V.: The generalized Baues problem. In: New Perspectives in Algebraic Combinatorics, L.J. Billera et al. (eds.), MSRI publications 38, 1999, Cambridge University Press, pp. 293–336

  17. Santos, F.: A point configuration whose space of triangulations is disconnected. J. Am. Math. Soc. 13(3), 611–637 (2000)

    Article  Google Scholar 

  18. Santos, F.: Triangulations with very few geometric bistellar neighbors. Discrete Comput. Geom. 23, 15–33 (2000)

    Google Scholar 

  19. Santos, F.: Triangulations of Oriented Matroids. Mem. Am. Math. Soc. Volume 156, number 741. American Mathematical Society, 2002

  20. Santos, F.: On the refinements of a polyhedral subdivision. Collect. Math. 52(3), 231–256 (2001)

    Google Scholar 

  21. Stillman, M., Sturmfels, B., Thomas, R.: Algorithms for the toric Hilbert scheme. In: Computations in Algebraic Geometry using Macaulay 2, D. Eisenbud et al. (eds.), Algorithms and Computation in Mathematics Vol 8, Springer, 2002, pp. 179–213

  22. Sturmfels, B.: Gröbner bases and convex polytopes. University Series Lectures 8, American Mathematical Society, Providence, 1995

  23. Sturmfels, B.: The geometry of A-graded algebras. Technical Report October 1994, math.AG/9410032

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Santos.

Additional information

Mathematics Subject Classification (2000): Primary 52B11; Secondary 52B20

The main result in this paper was obtained in the fall of 2001, while I was a visiting professor in the Department of Mathematics, U.C. Davis, supported by U. C. Davis, M.S.R.I. and the Spanish Government. I am also partially supported by grant BFM2001–1153 of the Spanish Dirección General de Enseñanza Superior e Investigación Científica. The paper is dedicated to Bernd Sturmfels on his 40th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, F. Non-connected toric Hilbert schemes. Math. Ann. 332, 645–665 (2005). https://doi.org/10.1007/s00208-005-0643-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-005-0643-5

Keywords

Navigation