Skip to main content
Log in

An immersion theorem for Vaisman manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract.

A locally conformally Kähler (LCK) manifold is a complex manifold admitting a Kähler covering , with monodromy acting on by Kähler homotheties. A compact LCK manifold is Vaisman if it admits a holomorphic flow acting by non-trivial homotheties on . We prove that any compact Vaisman manifold admits a natural holomorphic immersion to a Hopf manifold (ℂn∖0)ℤ. As an application, we obtain that any Sasakian manifold has a contact immersion to an odd-dimensional sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, B., Ivanov, St.: Weyl structures with positive Ricci tensor. Diff. Geom. Appl. 18, 343–350 (2003)

    Google Scholar 

  2. Baily, W.L.: On the imbedding of V-manifolds in projective spaces. Amer. J. Math. 79, 403–430 (1957)

    Google Scholar 

  3. Belgun, F.A.: On the metric structure of non-Kähler complex surfaces. Math. Ann. 317, 1–40 (2000)

    Google Scholar 

  4. Besse, A.: Einstein Manifolds, Springer-Verlag, New York (1987)

  5. Boyer, C.P., Galicki, K.: 3-Sasakian Manifolds, hep-th/9810250, also published In: Surveys in differential geometry: Essays on Einstein Manifolds. M. Wang, C. LeBrun (eds.), International Press 2000, 123–184

  6. Boyer, C.P., Galicki, K.: Einstein manifolds and contact geometry. Proc. Amer. Math. Soc. 129, 2419–2430 (2001)

    Google Scholar 

  7. Calderbank, D., Pedersen, H.: Einstein-Weyl geometry, In: Surveys in differential geometry: Essays on Einstein Manifolds, M. Wang C. LeBrun (eds.), International Press 387–423 (2000)

  8. Colţoiu, M.: q-convexity. A survey, In: Complex analysis and geometry (Trento, 1995), 83–93, Pitman Res. Notes Math. Ser., 366, Longman, Harlow, 1997

  9. Demailly, J.-P.: Holomorphic Morse inequalities, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), 93–114, Proc. Sympos. Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991

  10. Dragomir, S., Ornea, L.: Locally conformal Kähler geometry, Progress in Mathematics, 155. Birkhäuser, Boston, MA, 1998

  11. Gauduchon P.: La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267, 495–518 (1984)

    Google Scholar 

  12. Gauduchon, P., Ornea, L.: Locally conformally Kähler metrics on Hopf surfaces. Ann. Inst. Fourier 48, 1107–1127 (1998)

    Google Scholar 

  13. Gini, R., Ornea, L., Parton, M.: Locally conformal Kähler reduction, math.DG/0208208, 25 pages. To appear in J. Reine. Angew. Math.

  14. Gromov, M.: Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. No. 56 (1982), 5–99 (1983)

    Google Scholar 

  15. Kamishima, Y.: Locally conformal Kähler manifolds with a family of constant curvature tensors. Kumamoto J. Math. 11, 19–41 (1998)

    Google Scholar 

  16. Kamishima, Y., Ornea, L.: Geometric flow on compact locally conformally Kahler manifolds, math.DG/0105040, 21 pages. To appear in Tohoku Math. J.

  17. Madsen, A.B., Pedersen, H., Poon, Y.S., Swann, A.: Compact Einstein-Weyl manifolds with large symmetry group. Duke Math. J. 88, 407–434 (1997)

    Google Scholar 

  18. Morimoto, A.: On the classification of noncompact complex abelian Lie groups. Trans. Amer. Math. Soc. 123, 200–228 (1966)

    Google Scholar 

  19. Myers, S.B., Steenrod, N.: The group of isometries of Riemannian manifolds. Ann. Math. 40, 400–416 (1939)

    Google Scholar 

  20. Ornea, L.: Weyl structures on quaternionic manifolds. A state of the art, math.DG/0105041, also in: Selected Topics in Geomety and Mathematical Physics, vol. 1, 2002, 43–80, E. Barletta ed., Univ. della Basilicata (Potenza)

  21. Ornea, L., Verbitsky, M.: Structure theorem for compact Vaisman manifolds. Math. Res. Let. 10 , 799–805 (2003)

    Google Scholar 

  22. Petit, R.: Harmonic maps and strictly pseudoconvex CR manifolds. Comm. Anal. Geom. 10, 575–610 (2002)

    Google Scholar 

  23. Rukimbira, P.: Chern-Hamilton’s conjecture and K-contactness. Hous. J. of Math. 21, 709–718 (1995)

    Google Scholar 

  24. Sasaki, S.: On differentiable manifolds with certain structures which are closely related to almost contact structure. Tohoku Math. J. 2, 459–476 (1960)

    Google Scholar 

  25. Tanno, S.: The standard CR-structure of the unit tangent bundle. Tohoku Math. J. 44, 535–543 (1992)

    Google Scholar 

  26. Tsukada, K.: Holomorphic maps of compact generalized Hopf manifolds. Geom. Dedicata 68, 61–71 (1997)

    Google Scholar 

  27. Vaisman, I.: Generalized Hopf manifolds. Geom. Dedicata 13, no. 3, 231–255 (1982)

  28. Vaisman, I.: A survey of generalized Hopf manifolds. Rend. Sem. Mat. Torino, Special issue (1984), 205–221

  29. Verbitsky, M.: Vanishing theorems for locally conformal hyperkähler manifolds, 2003, math.DG/0302219, 41 pages.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misha Verbitsky.

Additional information

Mathematics Subject Classification (2000): 53C55, 14E25, 53C25

Liviu Ornea is member of EDGE, Research Training Network HRPN-CT-2000-00101, supported by the European Human Potential Programme.

Misha Verbitsky is an EPSRC advanced fellow supported by CRDF grant RM1-2354-MO02 and EPSRC grant GR/R77773/01.

Both authors acknowledge financial support from Ecole Polytechnique (Palaiseau).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ornea, L., Verbitsky, M. An immersion theorem for Vaisman manifolds. Math. Ann. 332, 121–143 (2005). https://doi.org/10.1007/s00208-004-0620-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-004-0620-4

Keywords

Navigation