Advertisement

Mathematische Annalen

, Volume 332, Issue 1, pp 103–119 | Cite as

Sur les variétés lorentziennes dont le groupe conforme est essentiel

  • Charles FrancesEmail author
Article

Keywords

Nous Proposons 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé.

Nous proposons de nombreuses constructions de variétés compactes lorentziennes pour lesquelles le groupe conforme ne préserve aucune mesure lisse. Ceci montre que le théorème de Ferrand-Obata ne se généralise pas au cadre lorentzien.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekseevski, D.: Selfsimilar lorentzian manifolds. Ann. Global Anal. Geom. 3, 59–84 (1985)CrossRefGoogle Scholar
  2. 2.
    D’Ambra, G., Gromov, M.: Lectures on transformation groups: geometry and dynamics. Surveys in differential geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 19–111 (1991)Google Scholar
  3. 3.
    Benoist, Y.: Propriétés asymptotiques des groupes linéaires. Geom. Funct. Anal. 7, 1–47 (1997)Google Scholar
  4. 4.
    Cahen, M., Kerbrat, Y.: Domaines symétriques des quadriques projectives. J. Math. Pures Appl. 62(9), 327–348 (1983)Google Scholar
  5. 5.
    de la Harpe, P.: Free groups in linear groups. Enseign. Math. 29(2), 129–144 (1983)Google Scholar
  6. 6.
    Ferrand, J.: Transformations conformes et quasiconformes des variétés riemanniennes; application à la démonstration d’une conjecture de A. Lichnerowicz. C. R. Acad. Sci. Paris Sér. A-B 269 (1969)Google Scholar
  7. 7.
    Frances, C.: Géométrie et dynamique lorentziennes conformes. Thèse. 2002. http://www.umpa.ens-lyon.fr/~cfrances/
  8. 8.
    Frances, C.: Lorentzian Kleinian groups. preprint. http://www.umpa.ens-lyon.fr/~cfrances/
  9. 9.
    Frances, C., Tarquini, C.: Autour du théorème de Ferrand-Obata. Ann. Global Anal. Geom. 21, 51–62 (2002)CrossRefGoogle Scholar
  10. 10.
    Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge Monographs on Mathematical Physics, No. 1. Cambridge University Press, London-New York, 1973Google Scholar
  11. 11.
    Iozzi, A., Witte, D.: Cartan-decomposition subgroups of SU(2,n). J. Lie Theory 11, 505–543 (2001)Google Scholar
  12. 12.
    Kühnel, W., Rademacher, H.B. Essential conformal fields in pseudo-Riemannian geometry. J. Math. Pures Appl. 74(9), 453–481 (1995)Google Scholar
  13. 13.
    Maskit, B.: Kleinian groups. Grundlehren der Mathematischen Wissenschaften , 287. Springer-Verlag, Berlin, 1988Google Scholar
  14. 14.
    Obata, M.: The conjectures on conformal transformations of Riemannian manifolds. J. Differential Geometry 6, 247–258 (1971/72)Google Scholar
  15. 15.
    Penrose, R.: Conformal treatment of infinity. in: Relativité, Groupes et Topologie (Lectures, Les Houches, 1963 Summer School of Theoret. Phys., Univ. Grenoble) pp. 563–584, Gordon and Breach, New Ann. Global Anal. Geom. 21, 51–62York (2002)Google Scholar
  16. 16.
    Seade, J., Verjovsky, A.: Higher dimensional complex Kleinian groups. Math. Ann. 322, 279–300 (2002)CrossRefGoogle Scholar
  17. 17.
    Thurston, W.: Three dimensional geometry and topology. Vol 1.- Princeton University Press, 1997. Edited by Silvio LevyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.UMPAÉcole Normale Supérieure de LyonLyon cedex 07France

Personalised recommendations