Advertisement

Mathematische Annalen

, Volume 332, Issue 1, pp 17–35 | Cite as

Monomial realization of crystal graphs for U q (A n (1))

  • Jeong-Ah KimEmail author
Article

Abstract.

We give a new realization of crystal graphs for irreducible highest weight modules over U q (A n (1)) in terms of the monomials introduced by H. Nakajima. We also discuss the natural connection between the monomial realization and other known realizations, path realization and Young wall realization.

Keywords

High Weight Weight Module High Weight Module Natural Connection Crystal Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Drinfel’d, V.G.: Hopf algebras and the quantum Yang-Baxter equation. Soviet Math. Dokl. 32, 254–258 (1985)Google Scholar
  2. 2.
    Hong, J., Kang, S.-J.: Introduction to Quantum Groups and Crystal Bases. Graduate Studies in Mathematics 42, Amer. Math. Soc., 2002Google Scholar
  3. 3.
    Jimbo, M.: A q-difference analogue of Open image in new window and the Yang-Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Jimbo, M., Misra, K.C., Miwa, T., Okado, M.: Combinatorics of Representation of Open image in new window at q=0. Comm. Math. Phys. 136, 543–566 (1991)Google Scholar
  5. 5.
    Kang, S.-J.: Crystal bases for quantum affine algebras and combinatorics of Young walls. Proc. London Math. Soc., 86, 29–69 (2003)Google Scholar
  6. 6.
    Kang, S.-J., Lee, H.: Higher level affine crystal and Young walls. Preprint, arXiv:Math. QA/0310430Google Scholar
  7. 7.
    Kashiwara, M.: Crystalizing the q-analogue of universal enveloping algebras. Comm. Math. Phys. 133, 249–260 (1990)Google Scholar
  8. 8.
    Kashiwara, M.: On crystal bases of the q-analogue of universal enveloping algebras. Duke Math. J. 63, 465–516 (1991)Google Scholar
  9. 9.
    Kashiwara, M.: Realizations of crystals. Contemp. Math. 325, Amer. Math. Soc., 133–139 (2003)Google Scholar
  10. 10.
    Kang, S.-J., Kashiwara, M., Misra, K.C.: Crystal bases of verma modules for the quantum affine Lie algebras. Composito Math. 92, 299–325 (1994)Google Scholar
  11. 11.
    Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T., Nakayashiki, A.: Affine crystals and vertex models. Int. J. Mod. Phys. A. Suppl. 1A, 449–484 (1992)Google Scholar
  12. 12.
    Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T., Nakayashiki, A.: Perfect crystals of quantum affine Lie algebras. Duke Math. J. 68, 499–607 (1992)Google Scholar
  13. 13.
    Kang, S.-J., Kim, J.-A., Shin, D.-U.: Monomial realization of crystal bases for special linear Lie algebras. Preprint math. RT/0303232, to appear in J. Algebra.Google Scholar
  14. 14.
    Kang, S.-J., Kim, J.-A., Shin, D.-U.: Crystal bases for quantum classical algebras and Nakajima’s monomials. Publ. Res. Inst. Math. Sci. 40, 758–791 (2004)Google Scholar
  15. 15.
    Misra, K., Miwa, T. Crystal base for the basic representation of Open image in new window. Comm. Math. Phys. 134, 79–88 (1990)Google Scholar
  16. 16.
    Nakajima, H.: Quiver varieties and finite dimensional representation s of quantumn affine algebras. J. Amer. Math. Soc.,14, 145–238 (2001)Google Scholar
  17. 17.
    Nakajima, H.: Quiver varieties and tensor products. Invent. Math. 146, 399–449 (2001)Google Scholar
  18. 18.
    Nakajima, H.: t-analogs of q-characters of quantum affine algebras of type An, Dn. Contemp. Math. 325 (2003), Amer. Math. Soc., 141–160Google Scholar
  19. 19.
    Nakajima, H.: t-analogue of the q-characters of finite dimensional representations of quantum affine algebras. in “Physics and Combinatorics”, Proceedings of the Nagoya 2000 International Workshop, World Scientific, 2001, 195–218Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.School of MathematicsKorea Institute for Advanced Study 207-43SeoulKorea

Personalised recommendations