Skip to main content
Log in

The Busemann-Petty problem for arbitrary measures

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract.

The Busemann-Petty problem asks whether symmetric convex bodies in ℝn with smaller (n−1)-dimensional volume of central hyperplane sections necessarily have smaller n-dimensional volume. The answer to this problem is affirmative for n≤4 and negative for n≥5. In this paper we generalize the Busemann-Petty problem to essentially arbitrary measure in place of the volume. We also present applications of the latter result by proving several inequalities concerning the measure of sections of convex symmetric bodies in ℝn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, K.: Cube slicing in ℝn. Proc. Am. Math. Soc. 97, 465–473 (1986)

    Google Scholar 

  2. Bourgain, J.: On high dimensional maximal functions associated to convex bodies. Am. J. Math. 108, 1467–1476 (1986)

    Google Scholar 

  3. Bourgain, J.: On the Busemann-Petty problem for perturbations of the ball. Geom. Funct. Anal. 1, 1–13 (1991)

    Google Scholar 

  4. Bourgain, J., Zhang, G.: On a generalization of the Busemann-Petty problem. Convex geometric analysis (Berkeley, CA, 1996), 65–76, Math. Sci. Res. Inst. Publ. 34, Cambridge Univ. Press, Cambridge, 1999

  5. Busemann, H., Petty, C.M.: Problems on convex bodies. Math. Scand. 4, 88–94 (1956)

    Google Scholar 

  6. Gardner, R.J.: Intersection bodies and the Busemann-Petty problem. Trans. Am. Math. Soc. 342, 435–445 (1994)

    Google Scholar 

  7. Gardner, R.J.: A positive answer to the Busemann-Petty problem in three dimensions. Ann. of Math. (2) 140, 435–447 (1994)

    Google Scholar 

  8. Gardner, R.J.: Geometric tomography. Cambridge Univ. Press, New York, 1995

  9. Gardner, R.J., Koldobsky, A., Schlumprecht, Th.: An analytic solution of the Busemann-Petty problem on sections of convex bodies. Annals of Math. 149, 691–703 (1999)

    Google Scholar 

  10. Gelfand, I.M., Shilov, G.E.: Generalized functions, vol. 1. Properties and operations. Academic Press, New York, 1964

  11. Gelfand, I.M., Vilenkin, N.Ya.: Generalized functions, vol. 4. Applications of harmonic analysis. Academic Press, New York, 1964

  12. Giannopoulos, A.: A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bodies. Mathematika 37, 239–244 (1990)

    Google Scholar 

  13. Goodey, P., Weil, W.: Intersection bodies and ellipsoids. Mathematika 42(2), 295–304 (1995)

    Google Scholar 

  14. Gromov, M., Milman, V.D.: Brunn theorem and a concentration of volume of convex bodies. GAFA Seminar Notes, Tel Aviv University, Israel 1983-1984, Exp. V., 12pp

  15. Hensley, D.: Slicing convex bodies-bounds for slice area in terms of the body’s covariance. Proc. Am. Math. Soc. 79, 619–625 (1980)

    Google Scholar 

  16. Koldobsky, A.: Inverse formula for the Blaschke-Levy representation. Houston J. Math. 23, 95–108 (1997)

    Google Scholar 

  17. Koldobsky, A.: An application of the Fourier transform to sections of star bodies. Israel J. Math 106, 157–164 (1998)

    Google Scholar 

  18. Koldobsky, A.: Intersection Bodies in ℝ4. Adv. Math. 136, 1–14 (1998)

    Article  Google Scholar 

  19. Koldobsky, A.: Intersection bodies, positive definite distributions, and the Busemann-Petty problem. Am. J. Math. 120(4), 827–840 (1998)

    Google Scholar 

  20. Koldobsky, A.: A generalization of the Busemann-Petty problem on sections of convex bodies. Israel J. Math. 110, 75–91 (1999)

    Google Scholar 

  21. Koldobsky, A.: Positive definite distributions and subspaces of L_ p with applications to stable processes. Canad. Math. Bull. 42(3), 344–353 (1999)

    Google Scholar 

  22. Koldobsky, A.: A functional analytic approach to intersection bodies. Geom. Funct. Anal. 10(6), 1507–1526 (2000)

    Google Scholar 

  23. Koldobsky, A.: On the derivatives of X-ray functions. Arch. Math. 79, 216–222 (2002)

    Article  Google Scholar 

  24. Koldobsky, A.: Sections of star bodies and the Fourier transform. Proceedings of the AMS-IMS-SIAM Summer Research Conference in Harmonic Analysis, Mt Holyoke, 2001, Contemp. Math. 320, 225–248 (2003)

  25. Koldobsky, A.: Comparison of volumes by means of the areas of central sections. Preprint

  26. Koldobsky, A.: Fourier analysis and convex geometry. Book preprint

  27. Koldobsky, A., Yaskina, M., Yaskin, V.: Modified Busemann-Petty problem on Sections of convex bodies. Preprint

  28. Koldobsky, A., Zymonopoulou, M.: Extremal sections of complex l p -balls, 0<p<2. Studia Mathematica 159, 185–194 (2003)

    Google Scholar 

  29. Larman, D.G., Rogers, C.A.: The existence of a centrally symmetric convex body with central sections that are unexpectedly small. Mathematika 22, 164–175 (1975)

    Google Scholar 

  30. Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232–261 (1988)

    Article  Google Scholar 

  31. Milman, V.D., Pajor, A.: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. Geometric aspects of functional analysis (1987–88), Lecture Notes in Math. 1376, Springer, Berlin, 1989, pp. 64–104

  32. Papadimitrakis, M.: On the Busemann-Petty problem about convex, centrally symmetric bodies in ℝn. Mathematika 39, 258–266 (1992)

    Google Scholar 

  33. Rubin, B., Zhang, G.: Generalizations of the BusemannfbPetty problem for sections of convex bodies. J. Funct. Anal. To appear

  34. Schmuckenschläger, M.: Volume of intersections and sections of the unit ball of ln p . Proc. Am. Math. Soc. 126(5), 1527–1530 (1998)

    Article  Google Scholar 

  35. Widder, D.V.: The Laplace transform. Princeton University Press, Princeton, NJ, 1941

  36. Zhang, G.: Centered bodies and dual mixed volumes. Trans. A.M.S. 345, 777–801 (1994)

    Google Scholar 

  37. Zhang, G.: A positive answer to the Busemann-Petty problem in four dimensions. Annals of Math. 149, 535–543 (1999)

    Google Scholar 

  38. Zvavitch, A.: Gaussian Measure of Sections of convex bodies. Adv. Math. 188/1, 124–136 (2004)

    Google Scholar 

  39. Zolotarev, V.M.: One-dimensional stable distributions. Am. Math. Soc. Providence, 1986

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zvavitch.

Additional information

Mathematics Subject Classification (2000): 52A15, 52A21, 52A38

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zvavitch, A. The Busemann-Petty problem for arbitrary measures. Math. Ann. 331, 867–887 (2005). https://doi.org/10.1007/s00208-004-0611-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-004-0611-5

Keywords

Navigation