Advertisement

Mathematische Annalen

, Volume 331, Issue 3, pp 651–667 | Cite as

Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up

  • Jong-Shenq Guo
  • Philippe SoupletEmail author
Article

Abstract.

We consider the dead-core problem for the semilinear heat equation with strong absorption u t =u xx u p with 0<p<1 and positive boundary values. We investigate the dead-core rate, i.e. the rate at which the solution reaches its first zero. Surprisingly, we find that the dead-core rate is faster than the one given by the corresponding ODE. This stands in sharp contrast with known results for the related extinction, quenching and blow-up problems. Moreover, we find that the dead-core rate is actually quite unstable: the ODE rate can be recovered if the absorption term is replaced by −a(t,x)u p for a suitable bounded, uniformly positive function a(t,x).

The result has some unexpected consequences for blow-up problems with perturbations. Namely, we obtain the conclusion that perturbing the standard semilinear heat equation by a dissipative gradient term may lead to fast blow-up, a phenomenon up to now observed only in supercritical higher dimensional cases for the unperturbed problem. Furthermore, the blow-up rate is found to depend on a very sensitive way on the constant in factor of the perturbation term.

Sharp estimates are also obtained for the profiles of dead-core and blow-up. The blow-up profile turns out to be slightly less singular than in the unperturbed case.

Keywords

Heat Equation Strong Absorption Positive Function Dimensional Case Unexpected Consequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandle, C., Nanbu, T., Stakgold, I.: Porous medium equation with absorption. SIAM J. Math. Anal. 29, 1268–1278 (1998)CrossRefGoogle Scholar
  2. 2.
    Bandle, C., Stakgold, I.: The formation of the dead core in parabolic reaction-diffusion problems. Trans. Amer. Math. Soc. 286, 275–293 (1984)Google Scholar
  3. 3.
    Bebernes, J., Eberly, D.: Characterization of blow-up for a semilinear heat equation with a convection term. Quart. J. Mech. Appl. Mech. 42, 447–456 (1989)Google Scholar
  4. 4.
    Boumenir, A.: Study of the blow-up set by transformation. J. Math. Anal. Appl. 201, 697–714 (1996)Google Scholar
  5. 5.
    Chen, X.-Y., Matano, H., Mimura, M.: Finite-point extinction and continuity of interfaces in a nonlinear diffusion equation with strong absorption. J. Reine Angew. Math. 459, 1–36 (1995)Google Scholar
  6. 6.
    Chen, Q., Wang, L.: On the dead core behavior for a semilinear heat equation. Math. Appl. 10, 22–25 (1997)Google Scholar
  7. 7.
    Chlebí k, M., Fila, M., Quittner, P.: Blow-up of positive solutions of a semilinear parabolic equation with a gradient term. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10, 525–537 (2003)Google Scholar
  8. 8.
    Choe, H.J., Weiss, G.S.: A semilinear parabolic equation with free boundary. Indiana Univ. Math. J. 52, 19–50 (2003)Google Scholar
  9. 9.
    Diaz, J., Hernández, J.: On the existence of a free boundary for a class of reaction-diffusion systems. SIAM J. Math. Anal. 15, 670–685 (1984)Google Scholar
  10. 10.
    Fila, M., Hulshof, J.: A note on the quenching rate. Proc. Amer. Math. Soc. 112, 473–477 (1991)Google Scholar
  11. 11.
    Filippas, S., Herrero, M.A., Velázquez, J.J.L.: Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity. Proc. R. Soc. Lond. A. 456, 2957–2982 (2000)Google Scholar
  12. 12.
    Friedman, A., Friedman, J., McLeod, J.B.: Concavity of solutions of nonlinear ordinary differential equations. J. Math. Anal. Appl. 131, 486–500 (1988)CrossRefGoogle Scholar
  13. 13.
    Friedman, A., Herrero, M.A.: Extinction properties of semilinear heat equations with strong absorption. J. Math. Anal. Appl. 124, 530–546 (1987)CrossRefGoogle Scholar
  14. 14.
    Friedman, A., McLeod, J.B.: Blow-up of positive solutions of semilinear heat equations. Indiana Univ. Math. J. 34, 425–447 (1985)Google Scholar
  15. 15.
    Galaktionov, V.A., Posashkov, S.A.: The equation ut=uxx+u β. Localization, asymptotic behavior of unbounded solutions. Akad. Nauk SSSR Inst. Prikl. Mat. Preprint 1985, no. 97, pp 30 (in Russian)Google Scholar
  16. 16.
    Galaktionov, V.A., Shmarev, S., Vázquez, J.L.: Second-order interface equations for nonlinear diffusion with very strong absorption. Commun. Contemp. Math. 1, 51–64 (1999)CrossRefGoogle Scholar
  17. 17.
    Galaktionov, V.A., Vázquez, J.L.: Blowup for quasilinear heat equations described by means of nonlinear Hamilton-Jacobi equations. J. Differ. Equations 127, 1–40 (1996)CrossRefGoogle Scholar
  18. 18.
    Giga, Y., Kohn, R.V.: Asymptotically self-similar blow-up of semilinear heat equations. Comm. Pure Appl. Math. 38, 297–319 (1985)Google Scholar
  19. 19.
    Giga, Y., Kohn, R.V.: Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36, 1–40 (1987)Google Scholar
  20. 20.
    Guo, J.-S.: On the quenching behavior of the solution of a semilinear parabolic equation. J. Math. Anal. Appl. 151, 58–79 (1990)Google Scholar
  21. 21.
    Guo, J.-S.: On the quenching rate estimate. Quarterly Appl. Math. 49, 747–752 (1991)Google Scholar
  22. 22.
    Guo, J.-S., Hu, B.: Quenching profile for a quasilinear parabolic equation. Quarterly Appl. Math. 58, 613–626 (2000)Google Scholar
  23. 23.
    Herrero, M.A., Velázquez, J.J.L.: On the dynamics of a semilinear heat equation with strong absorption. Comm. Partial Diff. Equations 14, 1653–1715 (1989)Google Scholar
  24. 24.
    Herrero, M.A., Velázquez, J.J.L.: Approaching an extinction point in one-dimensional semilinear heat equations with strong absorption. J. Math. Anal. Appl. 170, 353–381 (1992)CrossRefGoogle Scholar
  25. 25.
    Herrero, M.A., Velázquez, J.J.L.: Explosion de solutions des équations paraboliques semilinéaires supercritiques. C. R. Acad. Sci. Paris 319, 141–145 (1994)zbMATHGoogle Scholar
  26. 26.
    Kamin, S., Rosenau, Ph.: Thermal waves in an absorbing and convecting medium. Phys. D 8, 273–283 (1983)Google Scholar
  27. 27.
    Kawohl, B., Peletier, L.A.: Observations on blow up and dead cores for nonlinear parabolic equations. Math. Z. 202, 207–217 (1989)Google Scholar
  28. 28.
    Levine, H.A.: Quenching and beyond: a survey of recent results. Nonlinear Mathematical Problems in Industry, GAKUTO International Series, Math. Sci. Appl. Vol. 2, 1993, pp. 501–512Google Scholar
  29. 29.
    Martinson, L.K.: The finite velocity of propagation of thermal perturbations in media with constant thermal conductivity. Zh. Vychisl. Mat. i Mat. Fiz. 16, 1233–1243 (1976)Google Scholar
  30. 30.
    Matano, H., Merle, F.: On nonexistence of type II blow-up for a supercritical nonlinear heat equation. Commun. Pure Appl. Math. 57, 1494–1541 (2004)CrossRefGoogle Scholar
  31. 31.
    Merle, F., Zaag, H.: Refined uniform estimates at blow-up and applications for nonlinear heat equations. GAFA Geom. Funct. Anal. 8, 1043–1085 (1998)CrossRefGoogle Scholar
  32. 32.
    Peletier, L.A., Troy, W.C.: On nonexistence of similarity solutions. J. Math. Anal. Appl. 133, 57–67 (1988)CrossRefGoogle Scholar
  33. 33.
    Souplet, Ph.: Recent results and open problems on parabolic equations with gradient nonlinearities. Electronic J. Differ. Equations Vol. 2001, No. 20, 1–19 (2001)Google Scholar
  34. 34.
    Souplet, Ph., Tayachi, S., Weissler, F.B.: Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term. Indiana Univ. Math. J. 45, 655–682 (1996)Google Scholar
  35. 35.
    Souplet, Ph., Weissler, F.B.: Self-similar subsolutions and blow-up for nonlinear parabolic equations. J. Math. Anal. Appl. 212, 60–74 (1997)CrossRefGoogle Scholar
  36. 36.
    Stakgold, I.: Reaction-diffusion problems in chemical engineering. Nonlinear diffusion problems (Montecatini Terme, 1985), Lecture Notes in Math. 1224, Springer, Berlin, 1986, pp. 119–152Google Scholar
  37. 37.
    Velázquez, J.J.L.: Local behaviour near blow-up points for semilinear parabolic equations. J. Differ. Equations 106, 384–415 (1993)CrossRefGoogle Scholar
  38. 38.
    Velázquez, J.J.L.: Blow up for semilinear parabolic equations. Recent advances in partial differential equations. Research in applied mathematics, John Wiley & Sons, 1994, pp. 131–145Google Scholar
  39. 39.
    Weissler, F.B.: An L blow-up estimate for a nonlinear heat equation. Comm. Pure Appl. Math. 38, 291–295 (1985)Google Scholar
  40. 40.
    Yin, H.M.: The Lipschitz continuity of the interface in the heat equation with strong absorption. Nonlinear Anal. 20, 413–416 (1993)CrossRefGoogle Scholar
  41. 41.
    Souplet, Ph.: The influence of gradient perturbations on blow-up asymptotics in semilinear parabolic problems: a survey. Proc. of Conf. in honor of H. Amann (Zürich 2004), to appearGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsNational Taiwan Normal UniversityTaipeiTaiwan
  2. 2.Département de MathématiquesINSSET, Université de PicardieSt-QuentinFrance
  3. 3.Laboratoire de Mathématiques Appliquées, UMR CNRS 7641Université de VersaillesVersaillesFrance

Personalised recommendations