Advertisement

Mathematische Annalen

, Volume 331, Issue 3, pp 557–576 | Cite as

Average homogeneity and dimensions of measures

  • Esa JärvenpääEmail author
  • Maarit Järvenpää
Article

Abstract.

We introduce the concept of average homogeneity of a measure by comparing the measure to the uniform distribution in a relatively simple way. This leads to a very general notion which may be regarded as an inverse of porosity. In this paper the emphasis is given to relations between homogeneity and dimensions of measures. First we consider the effect of homogeneity on dimensions by proving an upper bound to the Hausdorff dimension as a function of homogeneity and its order. The opposite question of how dimensions effect homogeneity is solved by giving an upper bound to homogeneity in terms of upper packing dimension. We also illustrate by examples that all our results are the best possible ones.

Keywords

Porosity Uniform Distribution Hausdorff Dimension General Notion Dimension Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beliaev, D.B., Smirnov, S.K.: On dimension of porous measures. Math. Ann. 323, 123–141 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Berlinkov, A., Järvenpää, E.: Porosities in Mandelbrot percolation. preprint 280 http://www.math.jyu.fi/tutkimus/julkaisut.html
  3. 3.
    Billingsley, P.: Ergodic Theory and Information. John Wiley & Sons, New York, 1965Google Scholar
  4. 4.
    Cutler, C.D.: Strong and weak duality principles for fractal dimension in Euclidean space. Math. Proc. Cambridge Philos. Soc. 118, 393–410 (1995)zbMATHGoogle Scholar
  5. 5.
    Eckmann, J.-P., Järvenpää, E., Järvenpää, M.: Porosities and dimensions of measures. Nonlinearity 13, 1–18 (2000)Google Scholar
  6. 6.
    Falconer, K.J.: Techniques in fractal geometry. John Wiley & Sons, Chichester, 1997Google Scholar
  7. 7.
    Heurteaux, Y.: Estimations de la dimension inférieure et de la dimension supérieure des mesures. Ann. Inst. H. Poincaré Probab. Statist. 34, 309–338 (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Järvenpää, E., Järvenpää, M.: Porous measures on ℝn: local structure and dimensional properties. Proc. Amer. Math. Soc. 130, 419–426 (2001)Google Scholar
  9. 9.
    Kechris, A.S.: Classical Descriptive Set Theory. Springer Verlag, New York, 1995Google Scholar
  10. 10.
    Koskela, P., Rohde, S.: Hausdorff dimension and mean porosity. Math. Ann. 309, 593–609 (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Mattila, P.: Distribution of sets and measures along planes. Proc. London Math. Soc. 38(2), 125–132 (1998)zbMATHGoogle Scholar
  12. 12.
    Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and rectifiability. Cambridge University Press, Cambridge, 1995Google Scholar
  13. 13.
    Mera, M.E., Morán, M.: Attainable values for upper porosities of measures. Real. Anal. Exchange 26, 101–115 (2000/01)Google Scholar
  14. 14.
    Mera, M.E., Morán, M., Preiss, D., Zajíček, L.: Porosity, σ-porosity and measures. Nonlinearity 16, 247–255 (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Salli, A.: On the Minkowski dimension of strongly porous fractal sets in ℝn. Proc. London Math. Soc. 62(3), 353–372 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of JyväskyläFinland

Personalised recommendations