Mathematische Annalen

, Volume 331, Issue 3, pp 523–556 | Cite as

Pro-p-Iwahori Hecke ring and supersingular Open image in new window -representations

  • Marie-France Vignéras


The motivation of this paper is the search for a Langlands correspondence modulo p. We show that the pro-p-Iwahori Hecke ring Open image in new window of a split reductive p-adic group G over a local field F of finite residue field F q with q elements, admits an Iwahori-Matsumoto presentation and a Bernstein Z-basis, and we determine its centre. We prove that the ring Open image in new window is finitely generated as a module over its centre. These results are proved in [11] only for the Iwahori Hecke ring. Let p be the prime number dividing q and let k be an algebraically closed field of characteristic p. A character from the centre of Open image in new window to k which is “as null as possible” will be called null. The simple Open image in new window -modules with a null central character are called supersingular. When G=GL(n), we show that each simple Open image in new window -module of dimension n containing a character of the affine subring Open image in new window is supersingular, using the minimal expressions of Haines generalized to Open image in new window , and that the number of such modules is equal to the number of irreducible k-representations of the Weil group W F of dimension n (when the action of an uniformizer p F in the Hecke algebra side and of the determinant of a Frobenius Fr F in the Galois side are fixed), i.e. the number N n (q) of unitary irreducible polynomials in F q [X] of degree n. One knows that the converse is true by explicit computations when n=2 [10], and when n=3 (Rachel Ollivier).


Prime Number Local Field Explicit Computation Central Character Irreducible Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourbaki, N.: Algèbre commutative. Chapitre 5 à 7. Masson, 1985Google Scholar
  2. 2.
    Iwahori, N., Matsumoto, H.: On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups. Inst. Hautes Etudes Sci. Publ. Math. 25, 5–48 (1965)Google Scholar
  3. 3.
    Haines, T.J.: The combinatorics of Bernstein functions. Trans. Am. Math. Soc. 353, 1251–1278 (2001)CrossRefGoogle Scholar
  4. 4.
    Haines, T.J.: Test functions for Shimura varieties. The Shimura case. Duke Math. J. 106, 19–40 (2001)CrossRefGoogle Scholar
  5. 5.
    Haines, T.J., Pettet, A.: Formulae relating the Bernstein and Iwahori-Matsumoto presentations of an affine Hecke algebra. J. Algebra 252(1), 127–149 (2002)CrossRefGoogle Scholar
  6. 6.
    Lusztig, G.: Some examples of square integrable representations of semisimple p-adic groups. Transactions of the A.M.S. 277(2), 623–653 (1983)Google Scholar
  7. 7.
    Lusztig, G.: Affine Hecke algebras and their graded version. Journal of the American Mathematical Society 2(3), 599–635 (1989)Google Scholar
  8. 8.
    Morris, L.: Tamely ramified intertwining algebras. Invent. Math. 114, 1–54 (1993)CrossRefGoogle Scholar
  9. 9.
    Vigneras, M.-F.: Induced representations of reductive p-adic groups in characteristic p. Selecta Mathematica New Series 4, 549–623 (1998)CrossRefGoogle Scholar
  10. 10.
    Vigneras, M.-F.: Representations modulo p of the p-adic group GL(2,F). Compositio Math. 140, 333–358 (2004)CrossRefGoogle Scholar
  11. 11.
    Vigneras, M.-F.: Algèbres de Hecke affines génériques. ArXiv math.RT/0301058Google Scholar
  12. 12.
    Vigneras, M.-F.: Représentations -modulaires d’un groupes réductif p-adique avec p. Birkhauser, Progress in Math. 137, 1996Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Marie-France Vignéras
    • 1
  1. 1.Institut de Mathématiques de JussieuUniversité de Paris 7-Denis DiderotParis Cedex 05France

Personalised recommendations