Advertisement

Mathematische Annalen

, Volume 331, Issue 1, pp 203–217 | Cite as

Regularity of solutions to a non homogeneous boundary value problem for general Stokes systems in R n +

  • H. Beirão da Veiga
Article

Abstract.

We give a simple and very complete proof of the existence of a strong (H2) solution to the non-homogeneous problem (1.1) under the non homogeneous boundary conditions (1.6). Here we consider the half-space case Ω = Rn+, n≥ 3, see theorem 1.2. This regularity result was previously obtained by Solonnikov and Ščadilov in reference [33] for the classical Stokes system (μ=λ=0, g(x)=0) in the 3−D homogenous case (a=0, b=0) and Ω a suitable open subset of R3.

Keywords

Boundary Condition Open Subset Regularity Result Complete Proof Homogenous Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. 17, 35–92 (1964)zbMATHGoogle Scholar
  2. 2.
    Avantaggiati, A.: Spazi di Sobolev con peso ed alcune applicazioni. Bolletino UMI 13–A, 1–52 (1976)Google Scholar
  3. 3.
    Beavers, G.J., Joseph, D.D.: Boundary conditions of a naturally permeable wall. Bolletino U.M.I. serie 5 13–A, 1–52 (1976)Google Scholar
  4. 4.
    Bègue, C., Conca, C., Murat, F., Pironeau, O.: Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression. Collège de France Seminar-Vol.IX, 1988, Pitman Research Notes in Mathematics Series 181, pp. 169–264Google Scholar
  5. 5.
    Beirão da Veiga, H.: Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip type boundary conditions. Advances Diff. Eq. 9, 1079–1114 (2004)Google Scholar
  6. 6.
    Beirão da Veiga, H.: On the regularity of flows with Ladyzhenskaya shear dependent viscosity and slip or non-slip boundary conditions. Comm. Pure Appl. Math. 57, 1–26 (2004)CrossRefGoogle Scholar
  7. 7.
    Bemelmans, J.: Gleichgewichtfiguren zaher Flűssigkeiten mit Oberflachenspannung. Anal. 1, 241–282 (1981)zbMATHGoogle Scholar
  8. 8.
    Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 17, 308–340 (1964)Google Scholar
  9. 9.
    Conca, C.: On the application of the homogenization theory to a class of problems arising in fluid mechanics. J. Math. Pures Appl. 64, 31–75 (1985)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Constantin, P., Foias, C.: Navier-Stokes Equations. The University of Chicago Press, Chicago, 1988Google Scholar
  11. 11.
    Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer Verlag, Heidelberg, 1976Google Scholar
  12. 12.
    Galdi, G.P., Simader, C.G., Sohr, H.: On the Stokes problem in Lipschitz domains. Ann. Mat. Pura Appl. 167, 147–163 (1994)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Vol. I: Linearized Steady Problems. Springer Tracts in Natural Philosophy, Springer–Verlag, 38, 1998Google Scholar
  14. 14.
    Galdi, G.P., Layton, W.: Approximation of the larger eddies in fluid motion II: A model for space filtered flow. Math. Models Meth. Appl. Sci. 3, 343–350 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Giga, Y.: Analicity of the semigroup generated by the Stokes operator in Lr-spaces. Math. Z. 178, 287–329 (1981)Google Scholar
  16. 16.
    Hanouzet, B.: Espaces de Sobolev avec poids. Application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46, 227–272 (1971)zbMATHGoogle Scholar
  17. 17.
    John, V.: Slip with friction and penetration with resistence boundary conditions for the Navier-Stokes equations-numerical tests and aspects of the implementations. J. Comp. Appl. Math., to appearGoogle Scholar
  18. 18.
    Krein, S.G., Laptev, G.I.: On the problem of the motion of a viscous fluid in an open vessel. Functional Anal. Appl. 2, 38–47 (1968)Google Scholar
  19. 19.
    Ladyzenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New-York, 1969Google Scholar
  20. 20.
    Ladyzenskaya, O.A.: Relationship of the Stokes problem with decompositions of spaces Open image in new window and W(-1)2. St. Petersburg Math. J. 13, 601–612 (2002)Google Scholar
  21. 21.
    Liakos, A.: Discretization of the Navier-Stokes equations with slip boundary condition. Num. Meth. Partial Diff. Eq. 1, 1–18 (2001)zbMATHGoogle Scholar
  22. 22.
    Lions, J.-L.: Problèmes aux Limites dans les Équations aux Dérivées Partielles. Presses de l’Université de Montréal, Montréal, 1965Google Scholar
  23. 23.
    Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris, 1969Google Scholar
  24. 24.
    Mazja, V.G., Plamenevskii, B.A., Stupyalis, L.T.: The three-dimensional problem of stedy-state motion of a fluid with a free surface. Trans. Am. Math. Soc. 123, 171–268 (1984)Google Scholar
  25. 25.
    Nečas, J.: Les Methodes Directes en Theorie des Equations Elliptiques. Academia, Prague, 1967Google Scholar
  26. 26.
    Nirenberg, L.: On elliptic partial differential equations. An. Sc. Norm. Sup. Pisa 13, 116–162 (1959)Google Scholar
  27. 27.
    Parés, C.: Existence, uniqueness and regularity of solutions of the equations of a turbulence model for incompressible fluids. Appl. Anal. 43, 245–296 (1992)MathSciNetGoogle Scholar
  28. 28.
    Saito, H., Scriven, L.E.: Study of the coating flow by the finite elemente method. J. Comput. Phys. 42, 53–76 (1981)zbMATHGoogle Scholar
  29. 29.
    Silliman, J., Scriven, L.E.: Separating flow near a staic contact line: slip at a wall and shape of a free surface. J. Comput. Phys. 34, 287–313 (1980)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Solonnikov, V.A.: On estimates of Green tensors for certain boundary value problems. Dokl. Akad. Nauk. SSSR 29, 988–991 (1960)Google Scholar
  31. 31.
    Solonnikov, V.A.: General boundary value problems for Douglis-Nirenberg elliptic systems.II. Proceedings of the Steklov Institute of Mathematics. 92, 1966; English translation, American Mathematical Society, 1968Google Scholar
  32. 32.
    Solonnikov, V.A.: Solvability of three dimensional problems with a free boundary for a stationary system of Navier-Stokes equations. J. Sov. Math. 21, 427–450 (1983)zbMATHGoogle Scholar
  33. 33.
    Solonnikov, V.A., Ščadilov, V.E.: On a boundary value problem for a stationary system of Navier-Stokes equations. Proc. SteklovInst. Math. 125, 186–199 (1973)zbMATHGoogle Scholar
  34. 34.
    Tartar, L.: Nonlinear partial differential equations using compactness method. University of Wisconsin-Madison and Mathematics Research Center Technical Summary Report 1584, Feebruary 1976Google Scholar
  35. 35.
    Temam, R.: Navier-Stokes Equations. North-Holland, Amsterdam, 1984Google Scholar
  36. 36.
    Verfűrth, R.: Finite element approximation of incompressible Navier-Stokes equations with slip boundary conditions. Numer. Math. 50, 697–721 (1987)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • H. Beirão da Veiga
    • 1
  1. 1.Dipartimento di Matematica Applicata “U. Dini”Università di PisaPisaItaly

Personalised recommendations