Skip to main content
Log in

Order ideals and a generalized Krull height theorem

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract.

Let N be a finitely generated module over a Noetherian local ring (R,m). We give criteria for the height of the order ideal N*(x) of an element xN to be bounded by the rank of N. The Generalized Principal Ideal Theorem of Bruns, Eisenbud and Evans says that this inequality always holds if xmN. We show that the inequality even holds if the hypothesis becomes true after first extending scalars to some local domain and then factoring out torsion. We give other conditions in terms of residual intersections and integral closures of modules. We derive information about order ideals that leads to bounds on the heights of trace ideals of modules—even in circumstances where we do not have the expected bounds for the heights of the order ideals!

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruns, W.: The Eisenbud-Evans generalized principal ideal theorem and determinantal ideals. Proc. Amer. Math. Soc. 83, 19–24 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Bruns, W.: Generic maps and modules. Compositio Math. 47, 171–193 (1982)

    MathSciNet  MATH  Google Scholar 

  3. Bruns, W.: The Buchsbaum-Eisenbud structure theorems and alternating syzygies. Comm. Algebra 15, 873–925 (1987)

    MathSciNet  MATH  Google Scholar 

  4. Chardin, M., Eisenbud, D., Ulrich, B.: Hilbert functions, residual intersections, and residually S2 ideals. Compositio Math. 125, 193–219 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cowsik, R. C., Nori, M. V.: On the fibres of blowing up. J. Indian Math. Soc. (N.S.) 40, 217–222 (1976)

    MATH  Google Scholar 

  6. Eisenbud, D., Evans, E. G.: A generalized principal ideal theorem. Nagoya Math. J. 62, 41–53 (1976)

    MATH  Google Scholar 

  7. Eisenbud, D., Huneke, C., Ulrich, B.: What is the Rees algebra of a module?. Proc. Amer. Math. Soc. 131, 701–708 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Evans, E.G., Griffith, P.: Order ideals of minimal generators. Proc. Amer. Math. Soc. 86, 375–378 (1982)

    MathSciNet  MATH  Google Scholar 

  9. Evans, E.G., Griffith, P.: Order ideals. Commutative Algebra, eds. M. Hochster, C. Huneke, J. Sally. MSRI publications 15, Springer, New York, 1989, pp. 213–225

  10. Fulton, W.: Intersection Theory. Springer, New York, 1984

  11. Gimenez, P., Morales, M., Simis, A.: The analytic spread of the ideal of a monomial curve in projective 3-space. Computational Algebraic Geometry (Nice, 1992), eds. F. Eyssette, A. Galligo. Progr. in Math. 109, Birkhäuser, Boston, 1993, pp. 77–90

  12. Herzog, J.: Generators and relations of Abelian semigroups and semigroup rings. Manuscripta Math. 3, 175–193 (1970)

    MATH  Google Scholar 

  13. Hochster, M., Huneke, C.: Tight closure, invariant theory, and the Briançon-Skoda theorem. J. Amer. Math. Soc. 3, 31–116 (1990)

    MathSciNet  MATH  Google Scholar 

  14. Huneke, C., Rossi, M.: The dimension and components of symmetric algebras. J. Algebra 98, 200–210 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Katz, D.: Reduction criteria for modules. Comm. Algebra 23, 4543–4548 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Kleiman, S., Thorup, A.: A geometric theory of the Buchsbaum-Rim multiplicity. J. Algebra 167, 168–231 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krull, W.: Primidealketten in allgemeinen Ringbereichen. Sitzungsber. Heidelberger Akad. Wiss. 7 (1928)

  18. McAdam, S.: Asymptotic Prime Divisors. Lect. Notes in Math 1023, Springer, New York, 1983

  19. Migliore, J., Nagel, U., Peterson, C.: Buchsbaum-Rim sheaves and their multiple sections. J. Algebra 219, 378–420 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miyazaki, M., Yoshino, Y.: On heights and grades of determinantal ideals. J. Algebra 235, 783–804 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peskine, C., Szpiro, L.: Dimension projective finie et cohomologie locale. Publ. Math. I.H.E.S. 42, 47–119 (1973)

    MATH  Google Scholar 

  22. Rees, D.: Reduction of modules. Math. Proc. Camb. Phil. Soc. 101, 431–449 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Serre, J.-P.: Algèbre locale, multiplicités. Lect. Notes in Math. 11, Springer, New York, 1965

  24. Simis, A., Ulrich, B., Vasconcelos, W.: Jacobian dual fibrations. Amer. J. Math. 115, 47–75 (1993)

    MathSciNet  MATH  Google Scholar 

  25. Simis, A., Ulrich, B., Vasconcelos, W.: Codimension, multiplicity and integral extensions. Math. Proc. Camb. Phil. Soc. 130, 237–257 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Simis, A., Ulrich, B., Vasconcelos, W.: Rees algebras of modules. Proc. London Math. Soc. 87, 610–646 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Ulrich.

Additional information

All three authors were partially supported by the NSF.

Revised version: 24 November 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenbud, D., Huneke, C. & Ulrich, B. Order ideals and a generalized Krull height theorem. Math. Ann. 330, 417–439 (2004). https://doi.org/10.1007/s00208-004-0513-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-004-0513-6

Keywords

Navigation