Advertisement

Mathematische Annalen

, Volume 328, Issue 1–2, pp 299–351 | Cite as

Moduli spaces of holomorphic triples over compact Riemann surfaces

  • Steven B. BradlowEmail author
  • Oscar Gar-cía-Prada
  • Peter B. Gothen
Article

Abstract.

A holomorphic triple over a compact Riemann surface consists of two holomorphic vector bundles and a holomorphic map between them. After fixing the topological types of the bundles and a real parameter, there exist moduli spaces of stable holomorphic triples. In this paper we study non-emptiness, irreducibility, smoothness, and birational descriptions of these moduli spaces for a certain range of the parameter. Our results have important applications to the study of the moduli space of representations of the fundamental group of the surface into unitary Lie groups of indefinite signature ([5, 7]). Another application, that we study in this paper, is to the existence of stable bundles on the product of the surface by the complex projective line.

Keywords

Modulus Space Vector Bundle Riemann Surface Fundamental Group Important Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Álvarez-Cónsul, L., García-Prada, O.: Dimensional reduction, SL(2,ℂ)-equivariant bundles and stable holomorphic chains. Int. J. Math. 12, 159–201 (2001)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Álvarez-Cónsul, L., García-Prada, O.: Hitchin–Kobayashi correspondence, quivers and vortices. Comm. Math. Phys. 238, 1–31 (2003)Google Scholar
  3. 3.
    Biswas, I., Ramanan, S.: An infinitesimal study of the moduli of Hitchin pairs. J. London Math. Soc. (2) 49, 219–231 (1994)Google Scholar
  4. 4.
    Bradlow, S.B., García-Prada, O.: Stable triples, equivariant bundles and dimensional reduction. Math. Ann. 304, 225–252 (1996)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bradlow, S.B., García-Prada, O., Gothen P.B.: Representations of the fundamental group of a surface in PU(p,q) and holomorphic triples. C.R. Acad. Sci. Paris 333, 347–352 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Bradlow, S.B., García-Prada, O., Gothen P.B.: Surface group representations, Higgs bundles and holomorphic triples. Preprint, 2002, arXiv:math.AG/0206012Google Scholar
  7. 7.
    Bradlow, S.B., García-Prada, O., Gothen P.B.: Surface group representations and U(p,q)-Higgs bundles. J. Differential Geometry 64, 111–170 (2003)Google Scholar
  8. 8.
    Brambila–Paz, L., Grzegorczyk, I., Newstead, P.E.: Geography of Brill–Noether loci for small slopes. J. Algebraic Geom. 6, 645–669 (1997)Google Scholar
  9. 9.
    Corlette, K.: Flat G-bundles with canonical metrics. J. Diff. Geom. 28, 361–382 (1988)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Donaldson, S.K.: Anti-self-dual Yang–Mills connections on a complex algebraic surface and stable vector bundles. Proc. Lond. Math. Soc. 3, 1–26 (1985)MathSciNetGoogle Scholar
  11. 11.
    Donaldson, S.K.: Infinite determinants, stable bundles and curvature. Duke Math. J. 54, 231–247 (1987)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Donaldson, S.K.: Twisted harmonic maps and the self-duality equations. Proc. London Math. Soc. (3) 55, 127–131 (1987)Google Scholar
  13. 13.
    García-Prada, O.: Dimensional reduction of stable bundles, vortices and stable pairs. Int. J. Math. 5, 1–52 (1994)MathSciNetGoogle Scholar
  14. 14.
    Gieseker D.: On moduli of vector bundles on an algebraic surface. Ann. Math. 106, 45–60 (1977)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gothen, P.B.: Components of spaces of representations and stable triples. Topology 40, 823–850 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Gothen, P.B., King, A.D.: Homological algebra of quiver bundles. Preprint, 2002, arXiv: math.AG/0202033Google Scholar
  17. 17.
    Hernández, R.: On Harder-Narasimhan stratification over Quot schemes. J. Reine Angew. Math. 371, 115–124 (1986)MathSciNetGoogle Scholar
  18. 18.
    Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. London Math. Soc. 55, 59–126 (1987)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Hitchin, N.J.: Lie groups and Teichmüller space. Topology 31, 449–473 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Kobayashi S.: Differential Geometry of Complex Vector Bundles. Princeton University Press, New Jersey, 1987Google Scholar
  21. 21.
    Markman, E., Xia, E.Z.: The moduli of flat PU(p,p) structures with large Toledo invariants. Math. Z. 240, 95–109 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Maruyama M.: Elementary transformations in the theory of algebraic vector bundles. LNM 961, 241–266 (1982)Google Scholar
  23. 23.
    Qin, Z.B.: Equivalence classes of polarizations and moduli spaces of sheaves. J. Diff. Geom. 37, 397–415 (1993)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Narasimhan, M.S., Seshadri, C.S.: Stable and unitary bundles on a compact Riemann surface. Ann. Math. 82, 540–564 (1965)zbMATHGoogle Scholar
  25. 25.
    Schmitt, A.: Moduli problems of sheaves associated with oriented trees. Algebras and Representation theory 6, 1–32 (2003)CrossRefGoogle Scholar
  26. 26.
    Simpson, C.T.: Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J. Am. Math. Soc. 1, 867–918 (1988)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Simpson, C.T.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety I. Inst. Hautes Études Sci. Publ. Math. 79, 867–918 (1994)Google Scholar
  29. 29.
    Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety II. Inst. Hautes Études Sci. Publ. Math. 80, 5–79 (1994)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Taubes, C.H.: On the equivalence of the first and second order equations for gauge theories. Commun. Math. Phys.75, 207–227 (1980)Google Scholar
  31. 31.
    Thaddeus, M.: Stable pairs, linear systems and the Verlinde formula. Invent. Math. 117, 317–353 (1994)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Uhlenbeck, K.K., Yau S.T.: On the existence of Hermitian–Yang–Mills connections on stable bundles over compact Kähler manifolds. Comm. Pure and Appl. Math. 39–S, 257–293 (1986)Google Scholar
  33. 33.
    Witten E.: Some exact multipseudoparticle solutions of classical Yang–Mills theory. Phys. Rev. Lett. 38, 121 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Steven B. Bradlow
    • 1
    Email author
  • Oscar Gar-cía-Prada
    • 2
  • Peter B. Gothen
    • 3
  1. 1.Department of MathematicsUniversity of IllinoisUSA
  2. 2.Instituto de Matemáticas y Física FundamentalConsejo Superior de Investigaciones CientíficasMadridSpain
  3. 3.Departamento de Matemática PuraFaculdade de CiênciasPortugal

Personalised recommendations