Derivation of von Kármán Plate Theory in the Framework of Three-Dimensional Viscoelasticity


We apply a quasistatic nonlinear model for nonsimple viscoelastic materials at a finite-strain setting in Kelvin’s-Voigt’s rheology to derive a viscoelastic plate model of von Kármán type. We start from time-discrete solutions to a model of three-dimensional viscoelasticity considered in Friedrich and Kružík (SIAM J Math Anal 50:4426–4456, 2018) where the viscosity stress tensor complies with the principle of time-continuous frame-indifference. Combining the derivation of nonlinear plate theory by Friesecke, James and Müller (Commun Pure Appl Math 55:1461–1506, 2002; Arch Ration Mech Anal 180:183–236, 2006), and the abstract theory of gradient flows in metric spaces by Sandier and Serfaty (Commun Pure Appl Math 57:1627–1672, 2004), we perform a dimension-reduction from three dimensions to two dimensions and identify weak solutions of viscoelastic form of von Kármán plates.

This is a preview of subscription content, log in to check access.


  1. 1.

    Abels, H., Mora, M.G., Müller, S.: The time-dependent von Kármán plate equation as a limit of 3d nonlinear elasticity. Calc. Var. PDE41, 241–259, 2011

    Article  Google Scholar 

  2. 2.

    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Elsevier, Amsterdam 2003

    Google Scholar 

  3. 3.

    Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures Math. ETH Zürich. Birkhäuser, Basel 2005

    Google Scholar 

  4. 4.

    Antman, S.S.: Physically unacceptable viscous stresses. Z. Angew. Math. Phys. 49, 980–988, 1998

    MathSciNet  Article  Google Scholar 

  5. 5.

    Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York 2004

    Google Scholar 

  6. 6.

    Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403, 1977

    MathSciNet  Article  Google Scholar 

  7. 7.

    Ball, J.M., Currie, J.C., Olver, P.L.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41, 135–174, 1981

    MathSciNet  Article  Google Scholar 

  8. 8.

    Batra, R.C.: Thermodynamics of non-simple elastic materials. J. Elasticity6, 451–456, 1976

    ADS  Article  Google Scholar 

  9. 9.

    Bella, P., Kohn, R.V.: Coarsening of folds in hanging drapes. Commun. Pure Appl. Math. 70, 978–1021, 2017

    MathSciNet  Article  Google Scholar 

  10. 10.

    Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications. SIAM Rev. 59, 703–766, 2017

    MathSciNet  Article  Google Scholar 

  11. 11.

    Bock, I.: On Von Kármán equations for viscoelastic plates. J. Comput. Appl. Math. 63, 277–282, 1995

    MathSciNet  Article  Google Scholar 

  12. 12.

    Bock, I., Jarušek, J.: Solvability of dynamic contact problems for elastic von Kármán plates. SIAM J. Math. Anal. 41, 37–45, 2009

    MathSciNet  Article  Google Scholar 

  13. 13.

    Bock, I., Jarušek, J., Šilhavý, M.: On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate. Nonlinear Anal. Real World Appl. 32, 111–135, 2016

    MathSciNet  Article  Google Scholar 

  14. 14.

    Braides, A., Colombo, M., Gobbino, M., Solci, M.: Minimizing movements along a sequence of functionals and curves of maximal slope. C. R. Math. 354, 685–689, 2016

    MathSciNet  Article  Google Scholar 

  15. 15.

    Capriz, G.: Continua with latent microstructure. Arch. Ration. Mech. Anal. 90, 43–56, 1985

    MathSciNet  Article  Google Scholar 

  16. 16.

    Casarino, V., Percivale, D.: A variational model for nonlinear elastic plates. J. Convex Anal. 3, 221–243, 1996

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Ciarlet, P.G.: Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity. North-Holland, Amsterdam 1988

    Google Scholar 

  18. 18.

    Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Birkhäuser, Boston 1993

  19. 19.

    De Giorgi, E., Marino, A., Tosques, M.: Problems of evolution in metric spaces and maximal decreasing curve. Att. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68, 180–187, 1980

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Dunn, J.E., Serrin, J.: On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 88, 95–133, 1985

    MathSciNet  Article  Google Scholar 

  21. 21.

    Föppl, A.: Vorlesungen über technische Mechanik. Leipzig5, 132–139, 1907

    MATH  Google Scholar 

  22. 22.

    Friedrich, M., Kružík, M., Valdman, J.: Numerical approximation of von Kármán viscoelastic plates. Disc. Cont. Dynam. Syst.-S

  23. 23.

    Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55, 1461–1506, 2002

    MathSciNet  Article  Google Scholar 

  24. 24.

    Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by Gamma-Convergence. Arch. Ration. Mech. Anal. 180, 183–236, 2006

    MathSciNet  Article  Google Scholar 

  25. 25.

    Healey, T.J., Krömer, S.: Injective weak solutions in second-gradient nonlinear elasticity. ESAIM Control Optim. Calc. Var. 15, 863–871, 2009

    MathSciNet  Article  Google Scholar 

  26. 26.

    Krömer, S., Roubíček, T.: Quasistatic viscoelasticity with self-contact at large strains. J. Elasticity (to appear).

  27. 27.

    Kružík, M., Roubíček, T.: Mathematical Methods in Continuum Mechanics of Solids. Springer, Cham 2019

    Google Scholar 

  28. 28.

    Lecumberry, M., Müller, S.: Stability of slender bodies under compression and validity of the von Kármán theory. Arch. Ration. Mech. Anal. 193, 255–310, 2009

    MathSciNet  Article  Google Scholar 

  29. 29.

    Le Dret, H., Raoult, A.: The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 73, 549–578, 1995

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Le Dret, H., Raoult, A.: The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci. 6, 59–84, 1996

    ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    Lewicka, M., Mahadevan, L., Pakzad, M.R.: The Monge-Ampére constraint matching: of isometries, density and regularity and elastic theories of shallow shells. Ann. IHP (C) Nonlinear Anal. 34, 45–67, 2017

    MATH  Google Scholar 

  32. 32.

    Maddalena, F., Percivale, D., Tomarelli, F.: Variational problems for Föppl-von Kármán plates. SIAM J. Math. Anal. 50, 251–282, 2018

    MathSciNet  Article  Google Scholar 

  33. 33.

    Mielke, A., Ortner, C., Şengül, Y.: An approach to nonlinear viscoelasticity via metric gradient flows. SIAM J. Math. Anal. 46, 1317–1347, 2014

    MathSciNet  Article  Google Scholar 

  34. 34.

    Mielke, A., Roubíček, T.: Rate-independent elastoplasticity at finite strains and its numerical approximation. Math. Models Methods Appl. Sci. 26, 2203–2236, 2016

    MathSciNet  Article  Google Scholar 

  35. 35.

    Mielke, A., textscRoubíček, T.: Thermoviscoelasticity in Kelvin-Voigt rheology at large strains. Arch. Ration. Mech. Anal. Preprint at arXiv:1903.11094

  36. 36.

    Ortner, C.: Two Variational Techniques for the Approximation of Curves of Maximal Slope. Technical report NA05/10. Oxford University Computing Laboratory, Oxford 2005

    Google Scholar 

  37. 37.

    Pantz, O.: On the justification of the nonlinear inextensional plate model. Arch. Ration. Mech. Anal. 167, 179–209, 2003

    MathSciNet  Article  Google Scholar 

  38. 38.

    Park, J.Y., Kang, J.R.: Uniform decay of solutions for von Karman equations of dynamic viscoelasticity with memory. Acta Appl. Math. 110, 1461–1474, 2010

    MathSciNet  Article  Google Scholar 

  39. 39.

    Podio-Guidugli, P.: Contact interactions, stress, and material symmetry for nonsimple elastic materials. Theor. Appl. Mech. 28–29, 261–276, 2002

    MathSciNet  Article  Google Scholar 

  40. 40.

    Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57, 1627–1672, 2004

    MathSciNet  Article  Google Scholar 

  41. 41.

    Serfaty, S.: Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst. Ser. A31, 1427–1451, 2011

    MathSciNet  Article  Google Scholar 

  42. 42.

    Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414, 1962

    MathSciNet  Article  Google Scholar 

  43. 43.

    Toupin, R.A.: Theory of elasticity with couple stress. Arch. Ration. Mech. Anal. 17, 85–112, 1964

    Article  Google Scholar 

  44. 44.

    von Kármán, T.: Festigkeitsprobleme im Maschinenbau in Encyclopädie der Mathematischen Wissenschaften. vol. IV/4, Leipzig, 311–385, 1910.

Download references


This work was funded by the DFG Project FR 4083/1-1 and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044 -390685587, Mathematics Münster: Dynamics–Geometry–Structure. M.F. acknowledges support by the Alexander von Humboldt Stiftung and thanks for the warm hospitality at ÚTIA AVČR, where this project has been initiated. M.K. acknowledges support by the GAČR project 17-04301S and GAČR-FWF project 19-29646L.

Author information



Corresponding author

Correspondence to Martin Kružík.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by I. Fonseca

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Friedrich, M., Kružík, M. Derivation of von Kármán Plate Theory in the Framework of Three-Dimensional Viscoelasticity. Arch Rational Mech Anal 238, 489–540 (2020).

Download citation