Archive for Rational Mechanics and Analysis

, Volume 233, Issue 1, pp 497–512 | Cite as

Exact, Free-Surface Equatorial Flows with General Stratification in Spherical Coordinates

  • D. HenryEmail author
  • C. I. Martin


This paper is concerned with the construction of a new exact solution to the geophysical fluid dynamics governing equations for inviscid and incompressible fluid in the equatorial region. This solution represents a steady purely-azimuthal flow with a free-surface. The novel aspect of the solution we derive is that the flow it prescribes accommodates a general fluid stratification: the density may vary both with depth, and with latitude. The solution is presented in the terms of spherical coordinates, hence at no stage do we invoke approximations by way of simplifying the geometry in the governing equations. Following the construction of our explicit solution, we employ functional analytic considerations to prove that the pressure at the free-surface defines implicitly the shape of the free-surface distortion in a unique way, exhibiting also the expected monotonicity properties. Finally, using a short-wavelength stability analysis we prove that certain flows defined by our exact solution are stable for a specific choice of the density distribution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge the support of the Science Foundation Ireland (SFI) under the research grant 13/CDA/2117. The authors would like to thank the reviewer for constructive comments and suggestions.


  1. 1.
    Bayly, B.J.: Three-dimensional instabilities in quasi-two dimensional inviscid flows. In: Miksad, R.W., et al. (eds.) Nonlinear Wave Interactions in Fluids, pp. 71–77. ASME, New York (1987)Google Scholar
  2. 2.
    Berger, M.S.: Nonlinearity and Functional Analysis. Academic Press, New York (1977)zbMATHGoogle Scholar
  3. 3.
    Chen, R.M., Walsh, S., Wheeler, M.: Existence and qualitative theory for stratified solitary water waves. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(2), 517–576 2018Google Scholar
  4. 4.
    Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Constantin, A., Germain, P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802–2810 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the equatorial undercurrent. Geophys. Astrophys. Fluid Dyn. 109(4), 311–358 (2015)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46(6), 1935–1945 (2016). ADSCrossRefGoogle Scholar
  8. 8.
    Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current. J. Phys. Oceanogr. 46, 3585–3594 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Constantin, A., Ivanov, R.I.: A Hamiltonian approach to wave-current interactions in two-layer fluids. Physics of Fluids 27, 086603 (2015)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Constantin, A., Ivanov, R.I., Martin, C.I.: Hamiltonian formulation for wave-current interactions in stratified rotational flows. Arch. Ration. Mech. Anal 221, 1417–1447 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Constantin, A., Johnson, R.S.: A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline. Phys. Fluids 29, 056604 (2017). ADSCrossRefGoogle Scholar
  12. 12.
    Cushman-Roisin, B., Beckers, J.-M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, Waltham (2011)zbMATHGoogle Scholar
  13. 13.
    Escher, J., Matioc, A.-V., Matioc, B.-V.: On stratified steady periodic water waves with linear density distribution and stagnation points. J. Diff. Equ. 251, 2932–2949 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fedorov, A.V., Brown, J.N.: Equatorial waves. In: Steele, J. (ed), Encyclopedia of Ocean Sciences, pp. 3679–3695. Academic Press, New York, 2009Google Scholar
  15. 15.
    Friedlander, S., Vishik, M.M.: Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66, 2204–2206 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Genoud, F., Henry, D.: Instability of equatorial water waves with an underlying current. J. Math. Fluid Mech. 16, 661–667 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gill, A.: Atmosphere-Ocean Dynamics. Academic Press, New York (1982)Google Scholar
  18. 18.
    Henry, D., Hsu, H.-C.: Instability of internal equatorial water waves. J. Differential Equations 258(4), 1015–1024 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Henry, D., Martin, C.I.: Exact, purely azimuthal stratified equatorial flows in cylindrical coordinates. Dyn. Partial Differ. Equ. 15, 337–349 2018Google Scholar
  20. 20.
    Henry, D., Martin, C.-I.: Free-surface, purely azimuthal equatorial flows in spherical coordinates with stratification. J. Differential Equations, to appearGoogle Scholar
  21. 21.
    Henry, D., Matioc, A.-V.: Global bifurcation of capillary-gravity-stratified water waves. Proc. Roy. Soc. Edinburgh Sect. A 144(4), 775–786 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Henry, D., Matioc, B.-V.: On the existence of steady periodic capillary-gravity stratified water waves. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12(4), 955–974 2013Google Scholar
  23. 23.
    Ionescu-Kruse, D.: On the short-wavelength stabilities of some geophysical flows. Phil. Trans. R. Soc. A 376, 20170090 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ionescu-Kruse, D.: Local stability for an exact steady purely azimuthal flow which models the antarctic circumpolar current. J. Math Fluid Mech. 20, 569–579 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ionescu-Kruse, D., Martin, C.I.: Local stability for an exact steady purely azimuthal equatorial flow. J. Math. Fluid Mech. 20, 27–34 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Izumo, T.: The equatorial current, meridional overturning circulation, and their roles in mass and heat exchanges during the El Niño events in the tropical Pacific Ocean. Ocean Dyn. 55, 110–123 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Johnson, G.C., McPhaden, M.J., Firing, E.: Equatorial Pacific ocean horizontal velocity, divergence, and upwelling. J. Phys. Oceanogr. 31, 839–849 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    Johnson, R.S.: Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography. Phil. Trans. R. Soc. A 376, 20170092 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kessler, W.S., McPhaden, M.J.: Oceanic equatorial waves and the 1991–93 El Niño. J. Climate 8, 1757–1774 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    Lifschitz, A., Hameiri, E.: Local stability conditions in fluid dynamics. Phys. Fluids 3, 2644–2651 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Martin, C.I.: On the existence of free-surface azimuthal equatorial flows. Appl. Anal. 96(7), 1207–1214 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Matioc, B.-V.: Global bifurcation for water waves with capillary effects and constant vorticity. Monatsh. Math. 174(3), 459–475 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Maslowe, S.A.: Critical layers in shear flows. Ann. Rev. Fluid. Mech. 18, 405–432 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    McCreary, J.P.: Modeling equatorial ocean circulation. Ann. Rev. Fluid Mech. 17, 359–409 (1985)ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    Vallis, G.K.: Atmospheric and oceanic fluid dynamics. Cambridge University Press (2006)Google Scholar
  36. 36.
    Walsh, S.: Stratified steady periodic water waves. SIAM J. Math. Anal. 41, 1054–1105 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Walsh, S.: Steady stratified periodic gravity waves with surface tension II: global bifurcation. Discret. Contin. Dyn. Syst. 34(8), 3287–3315 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity College CorkCorkIreland

Personalised recommendations