Skip to main content
Log in

An Energetic Variational Approach for the Cahn–Hilliard Equation with Dynamic Boundary Condition: Model Derivation and Mathematical Analysis

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The Cahn–Hilliard equation is a fundamental model that describes phase separation processes of binary mixtures. In recent years, several types of dynamic boundary conditions have been proposed in order to account for possible short-range interactions of the material with the solid wall. Our first aim in this paper is to propose a new class of dynamic boundary conditions for the Cahn–Hilliard equation in a rather general setting. The derivation is based on an energetic variational approach that combines the least action principle and Onsager’s principle of maximum energy dissipation. One feature of our model is that it naturally fulfills three important physical constraints: conservation of mass, dissipation of energy and force balance relations. Next, we provide a comprehensive analysis of the resulting system of partial differential equations. Under suitable assumptions, we prove the existence and uniqueness of global weak/strong solutions to the initial boundary value problem with or without surface diffusion. Furthermore, we establish the uniqueness of the asymptotic limit as \({t\to+\infty}\) and characterize the stability of local energy minimizers for the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. 67(11), 3176–3193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akagi, G.: Stability of non-isolated asymptotic profiles for fast diffusion. Commun. Math. Phys. 345(1), 77–100 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30(1), 139–165 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bai, F., Elliott, C.M., Gardiner, A., Spence, A., Stuart, A.M.: The viscous Cahn-Hilliard equation. I. Computations. Nonlinearity8, 131–160 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bates, P., Fife, P.: The dynamics of nucleation for the Cahn-Hilliard equation. SIAM J. Appl. Math. 53(4), 990–1008 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezzi, F., Gilardi, G.: Part I. FEM mathematics.Finite Element Handbook, (Ed. Kardestuncer H.) McGraw-Hill Book Co., New York, 1987

  7. Caffarelli, L.A., Muller, N.E.: An \(L^\infty \) bound for solutions of the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 133, 129–144 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)

    Article  Google Scholar 

  9. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 2, 258–267 (1958)

    Google Scholar 

  10. Cavaterra, C., Gal, C.G., Grasselli, M.: Cahn-Hilliard equations with memory and dynamic boundary conditions. Asymptot. Anal. 71, 123–162 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Cavaterra, C., Grasselli, M., Wu, H.: Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions. Commun. Pure Appl. Anal. 13(5), 1855–1890 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cazenave, T., Haraux, A.:An Introduction to Semilinear Evolution Equations. Oxford Lecture Series in Mathematics and Its Applications, Vol. 13. Oxford University Press, New York, 1998

  13. Chen, X.F.: Global asymptotic limit of solutions of the Cahn-Hilliard equation. J. Differ. Geom. 44, 262–311 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, X.F., Wang, X.P., Xu, X.M.: Analysis of the Cahn-Hilliard equation with a relaxation boundary condition modeling the contact angle dynamics. Arch. Ration. Mech. Anal. 213, 1–24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cherfils, L., Gatti, S., Miranville, A.: A variational approach to a Cahn–Hilliard model in a domain with nonpermeable walls.J. Math. Sci. (N.Y.) 189, 604–636, 2013

  16. Cherfils, L., Miranville, A., Zelik, S.: The Cahn-Hilliard equation with logarithmic potentials. Milan J. Math. 79, 561–596 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chill, R.: On the Łojasiewicz-Simon gradient inequality. J. Funct. Anal. 201(2), 572–601 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chill, R., Fasangová, E., Prüss, J.: Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions. Math. Nachr. 279(13–14), 1448–1462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Colli, P., Fukao, T.: Cahn-Hilliard equation with dynamic boundary conditions and mass constraint on the boundary. J. Math. Anal. Appl. 429(2), 1190–1213 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Colli, P., Fukao, T.: Equation and dynamic boundary condition of Cahn-Hilliard type with singular potentials. Nonlinear Anal. 127, 413–433 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Colli, P., Gilardi, G., Sprekels, J.: On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential. J. Math. Anal. Appl. 419(2), 972–994 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Colli, P., Gilardi, G., Sprekels, J.: On a Cahn–Hilliard system with convection and dynamic boundary conditions.Ann. Mat. Pura Appl. (4) 197(5), 1445–1475, 2018

  23. Denk, R., Prüss, J., Zacher, R.: Maximal \(L^p\)-regularity of parabolic problems with boundary dynamics of relaxation type. J. Funct. Anal. 255, 3149–3187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Du, Q., Liu, C., Ryham, R., Wang, X.Q.: Energetic variational approaches in modeling vesicle and fluid interactions. Physica D238, 923–930 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Dziuk, G., Elliott, C.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262–292 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Eisenberg, B., Hyon, Y., Liu, C.: Energy variational analysis of ions in water and channels: field theory for primitive models of complex ionic fluids. J. Chem. Phys. 133(10), 104104 (2010)

    Article  ADS  Google Scholar 

  27. Elliott, C.M., Stuart, A.M.: Viscous Cahn-Hilliard equation. II. Analysis. J. Differ. Equ. 128, 387–414 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Elliott, C.M., Zheng, S.: On the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 96, 339–357 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Feireisl, E., Simondon, F.: Convergence for semilinear degenerate parabolic equations in several space dimensions. J. Dyn. Differ. Equ. 12(3), 647–673 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fischer, H.P., Maass, P., Dieterich, W.: Novel surface modes in spinodal decomposition. Phys. Rev. Lett. 79, 893–896 (1997)

    Article  ADS  Google Scholar 

  31. Fischer, H.P., Reinhard, J., Dieterich, W., Gouyet, J.F., Maass, P., Majhofer, A., Reinel, D.: Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall. J. Chem. Phys. 108, 3028–3037 (1998)

    Article  ADS  Google Scholar 

  32. Forster, J.: Mathematical Modeling of Complex Fluids, Master's Thesis, University of Würzburg, 2013

  33. Fried, E., Gurtin, M.E.: Continuum theory of thermally induced phase transitions based on an order parameter. Physica D68, 326–343 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Gal, C.G.: A Cahn-Hilliard model in bounded domains with permeable walls. Math. Methods Appl. Sci. 29, 2009–2036 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Gal, C.G.: Global well-posedness for the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions. Adv. Differ. Equ. 12, 1241–1274 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Gal, C.G.: Well-posedness and long time behavior of the non-isothermal viscous Cahn-Hilliard equation with dynamic boundary conditions. Dyn. Partial Differ. Equ. 5, 39–67 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gal, C.G., Miranville, A.: Uniform global attractors for non-isothermal viscous and non-viscous Cahn-Hilliard equations with dynamic boundary conditions. Nonlinear Anal. Real World Appl. 10, 1738–1766 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gal, C.G., Miranville, A.: Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete Contin. Dyn. Syst. Ser. S2, 113–147 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gal, C.G., Wu, H.: Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation. Discrete Contin. Dyn. Syst. 22, 1041–1063 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Garcke, H., Knopf, P.: Weak solutions of the Cahn–Hilliard system with dynamic boundary conditions: a gradient flow approach, preprint, 2018. arXiv:1810.09817

  41. Gilardi, G., Miranville, A., Schimperna, G.: On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Commun. Pure Appl. Anal. 8, 881–912 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gilardi, G., Miranville, A., Schimperna, G.: Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Chin. Ann. Math. Ser. B31, 679–712 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Giorgini, A., Grasselli, M., Miranville, A.: The Cahn-Hiliard-Oono equation with singular potential. Math. Models Methods Appl. Sci. 27(13), 2485–2510 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Giorgini, A., Grasselli, M., Wu, H.: On the Cahn–Hilliard–Hele–Shaw system with singular potential.Ann. Inst. H. Poincaré Anal. Non Lineaire 35(4), 1079–1118, 2018

  45. Goldstein, G., Miranville, A., Schimperna, G.: A Cahn-Hilliard model in a domain with non-permeable walls. Physica D240(8), 754–766 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Grinfeld, M., Novick-Cohen, A.: Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments. Proc. R. Soc. Edinb. Sect. A125, 351–370 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  47. Gurtin, M.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D92, 178–192 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Haraux, A., Jendoubi, M.A.: Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity. Asymptot. Anal. 26(1), 21–36 (2001)

    MathSciNet  MATH  Google Scholar 

  49. Heida, M.: On the derivation of thermodynamically consistent boundary conditions for the Cahn-Hilliard-Navier-Stokes system. Int. J. Eng. Sci. 62, 126–156 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Heida, M.: Existence of solutions for two types of generalized versions of the Cahn-Hilliard equation. Appl. Math. 60(1), 51–90 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Henry, D.:Geometric Theory of Semilinear Parabolic Equations Lecture Notes in Mathematics, Vol. 840. Springer, Berlin, 1981

  52. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations, Applied Mathematical Sciences, vol. 164. Springer, Berlin (2008)

    Book  Google Scholar 

  53. Huang, S.Z., Takáč, P.: Convergence in gradient-like systems which are asymptotically autonomous and analytic. Nonlinear Anal. 46, 675–698 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Hyon, Y., Kwak, D.Y., Liu, C.: Energetic variational approach in complex fluids: maximum dissipation principle. Discrete Contin. Dyn. Syst. 26(4), 1291–1304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kajiwara, N.: Global well-posedness for a Cahn–Hilliard equation on bounded domains with permeable and non-permeable walls in maximal regularity spaces. Adv. Math. Sci. Appl. 27(2), 277–298, 2018

  56. Kenzler, R., Eurich, F., Maass, P., Rinn, B., Schropp, J., Bohl, E., Dieterich, W.: Phase separation in confined geometries: solving the Cahn-Hilliard equation with generic boundary conditions. Comput. Phys. Commun. 133, 139–157 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Khain, E., Sander, L.M.: Generalized Cahn-Hilliard equation for biological applications. Phys. Rev. E77, 051129 (2008)

    Article  ADS  Google Scholar 

  58. Koba, H., Liu, C., Giga, Y.: Energetic variational approaches for incompressible fluid systems on an evolving surface. Quart. Appl. Math. 75(2), 359–389 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Ladyzhenskaya, O., Solonnikov, V., Ural'ceva, N.:Linear and Quasi-linear Equations of Parabolic Type, Translations of Mathematical Monographs. American Mathematical Society, Providence, 1968

  60. Lions, J.L., Magenes, E.:Non-Homogeneous Boundary Value Problems and Applications Vol. 1, Die Grundlehren der mathematischen Wissenschaften, Vol. 181, Springer-Verlag Berlin Heidelberg, 1972

  61. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D179(3–4), 211–228 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions.R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1978), 2617–2654, 1998

  63. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  64. Miranville, A.: The Cahn-Hilliard equation and some of its variants. AIMS Math. 2(3), 479–544 (2017)

    Article  Google Scholar 

  65. Miranville, A., Zelik, S.: Exponential attractors for the Cahn-Hilliard equation with dynamical boundary conditions. Math. Methods Appl. Sci. 28, 709–735 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Miranville, A., Zelik, S.: The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete Contin. Dyn. Syst. 28, 275–310 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. Nirenberg, L.: On elliptic partial differential equations. Annali della Scoula Norm. Sup. Pisa13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  68. Novick-Cohen, A.: On the viscous Cahn–Hilliard equation.Material Instabilities in Continuum Mechanics (Edinburgh, 1985–1986), pp. 329–342. Oxford University Press, New York, 1988

  69. Novick-Cohen, A.: The Cahn–Hilliard equation.Evolutionary Equations, Handbook of Differential Equations, Vol. 4, pp. 201–228 (Eds. Dafermos C.M. and Pokorný M.) Elsevier/North-Holland, Amsterdam, 2008

  70. Oden, J.T., Prudencio, E.E., Hawkins-Daarud, A.: Selection and assessment of phenomenological models of tumor growth. Math. Models Methods Appl. Sci. 23, 1309–1338 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  71. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)

    Article  ADS  MATH  Google Scholar 

  72. Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931)

    Article  ADS  MATH  Google Scholar 

  73. Pego, R.: Front migration in the nonlinear Cahn-Hilliard equation. Proc. R. Soc. Lond. A422, 261–278 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Prüss, J., Racke, R., Zheng, S.: Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions. Annali di Matematica Pura ed Applicata185(4), 627–648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  75. Qian, T.Z., Qiu, C.Y., Sheng, P.: A scaling approach to the derivation of hydrodynamic boundary conditions. J. Fluid Mech. 611, 333–364 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Qian, T.Z., Wang, X.P., Sheng, P.: A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333–360 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Racke, R., Zheng, S.: The Cahn-Hilliard equation with dynamical boundary conditions. Adv. Differ. Eqs. 8(1), 83–110 (2003)

    MATH  Google Scholar 

  78. Rätz, A., Voigt, A.: PDE's on surfaces–a diffuse interface approach. Commun. Math. Sci. 4(3), 575–590 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  79. Rayleigh, L., Strutt, J.W.: Some general theorems relating to vibrations. Proc. Lond. Math. Soc. 4, 357–368 (1873)

    MathSciNet  MATH  Google Scholar 

  80. Rybka, P., Hoffmann, K.H.: Convergence of solutions to Cahn-Hillard equation. Commun. Partial Differ. Equ. 24(5–6), 1055–1077 (1999)

    Article  MATH  Google Scholar 

  81. Simon, J.: Compact sets in the space \(L^p(0, T; B)\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  82. Simon, L.: Asymptotics for a class of non-linear evolution equations, with applications to geometric problems. Ann. Math. 118(3), 525–571 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  83. Sonnet, A.M., Virga, E.G.: Dissipative Ordered Fluids Theories for Liquid Crystals. Springer, New York (2012)

    Book  MATH  Google Scholar 

  84. Thompson, P.A., Robbins, M.O.: Simulations of contact-line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766–769 (1989)

    Article  ADS  Google Scholar 

  85. Wei, J., Winter, M.: Stationary solutions for the Cahn–Hilliard equation.Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 459–492, 1998

  86. Wu, H.: Convergence to equilibrium for a Cahn-Hilliard model with the Wentzell boundary condition. Asymptot. Anal. 54, 71–92 (2007)

    MathSciNet  MATH  Google Scholar 

  87. Wu, H., Xu, X., Liu, C.: On the general Ericksen-Leslie system: Parodi's relation, well-posedness and stability. Arch. Ration. Mech. Anal. 208(1), 59–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  88. Wu, H., Zheng, S.: Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary condition. J. Differ. Equ. 204, 511–531 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Xu, S.X., Sheng, P., Liu, C.: An energetic variational approach for ion transport. Commun. Math. Sci. 12(4), 779–789 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  90. Zhao, L.Y., Wu, H., Huang, H.Y.: Convergence to equilibrium for a phase-field model for the mixture of two incompressible fluids. Commun. Math. Sci. 7(4), 939–962 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  91. Zheng, S.: Asymptotic behavior of solution to the Cahn-Hillard equation. Appl. Anal. 23(3), 165–184 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  92. Zheng, S.: Nonlinear Evolution Equations, Pitman Series Monographs and Survey in Pure and Applied Mathematics, vol. 133. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

Download references

Acknowledgements

The authorswould like to thank the anonymous referees for their careful reading of an initial version of this paper and for several helpful comments that allowed us to improve the presentation. The authors also want to thank Professors P. Colli, T. Fukao, C. Gal, H. Garcke, T.-Z. Qian and U. Stefanelli for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wu.

Ethics declarations

Funding

C. Liu is partially supported byNSF grantsDMS-1714401, DMS-1412005. H. Wu is partially supported by NNSFC grant No. 11631011 and the Shanghai Center for Mathematical Sciences at Fudan University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Bressan

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wu, H. An Energetic Variational Approach for the Cahn–Hilliard Equation with Dynamic Boundary Condition: Model Derivation and Mathematical Analysis. Arch Rational Mech Anal 233, 167–247 (2019). https://doi.org/10.1007/s00205-019-01356-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01356-x

Navigation