Skip to main content

Advertisement

Log in

Energy of the Coulomb Gas on the Sphere at Low Temperature

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the Coulomb gas of N particles on the sphere and show that the logarithmic energy of the configurations approaches the minimal energy up to an error of order log N, with exponentially high probability and on average, provided the temperature is \({\mathcal{O}(1/N)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alishahi K., Zamani M.: The spherical ensemble and uniform distribution of points on the sphere. Electron. J. Probab. 20(23), 1–27 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Armentano D., Beltrán C., Shub M.: Minimizing the discrete logarithmic energy on the sphere: the role of random polynomials. Trans. Am. Math. Soc. 363(6), 2955–2965 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beltrán C.: Harmonic properties of the logarithmic potential and the computability of elliptic fekete points. Constr. Approx. 37, 135–165 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bétermin L., Sandier E.: Renormalized energy and symptotic expansion of optimal logarithmic energy on the sphere. Constr. Approx. 47(1), 39–74 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blum L., Cucker F., Shub M., Smale S.: Complexity and real computation: a manifesto. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 6(1), 3–26 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brauchart J.S.: Optimal logarithmic energy points on the unit sphere. Math. Comput. 77(263), 1599–1613 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Brauchart J.S., Hardin D.P., Saff E.B.: The next-order term for optimal riesz and logarithmic energy asymptotics on the sphere. Contemp. Math. 578(2), 31–61 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Butez R.: Large deviations for the empirical measure of random polynomials: revisit of the Zeitouni–Zelditch theorem. Electron. J. Probab. 21, 37 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Butez, R., Zeitouni, O.: Universal large deviations for Kac polynomials. Electron. Commun. Probab. 22(6), 1–10 (2017)

  10. Dragnev, P.D.: On the separation of logarithmic points on the sphere. Approximation Theory, X (St. Louis, MO, 2001), Innov. Appl. Math., pp. 137–144 (2002)

  11. Dubickas A.: On the maximal product of distances between points on a sphere. Liet. Mat. Rink. 36(3), 303–312 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Etayo, U., Beltrán, C.: Work in progress

  13. Forrester, P.J.: Log-Gases and Random Matrices. Number 34 in London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ (2010)

  14. Hardin D.P., Michaels T., Saff E.B.: A comparison of popular point configurations on \({\mathbb{S}^{2}}\). Dolomit. Res. Notes Approx. 9, 16–49 (2016)

    Article  MATH  Google Scholar 

  15. Hough J.B., Krishnapur M., Peres Y., Virág B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes, vol.51. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  16. Jost J.: Postmodern Analysis, Universitext, 3rd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  17. Krishnapur, M.: Zeros of random analytic functions. Ph.D. Thesis, U.C. Berkley (2006)

  18. Rakhmanov E.A., Saff E.B., Zhou Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1(6), 647–662 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sandier E., Serfaty S.: From the Ginzburg–Landau model to vortex lattice problems. Commun. Math. Phys. 313(3), 635–743 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Smale, S.: Mathematical problems for the next century. Mathematics: Frontiers and Perspectives, pp. 271–294 (2000)

  21. Wagner G.: On the product of distances to a point set on a sphere. J. Aust. Math. Soc. Ser. A 47(3), 466–482 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zeitouni O., Zelditch S.: Large deviations of empirical measures of zeros of random polynomials. Int. Math. Res. Not. 20, 3935–3992 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Zelditch, S., Zhong, Q.: Addendum to “Energies of zeros of random sections on Riemann surfaces”. Indiana Univ. Math. J. 57(4), 1753–1780 (2008). Indiana Univ. Math. J. 59(6), 2001–2005 (2010)

  24. Zhong Q.: Energies of zeros of random sections on Riemann surfaces. Indiana Univ. Math. J. 57(4), 1753–1780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Hardy.

Additional information

Communicated by S. Serfaty

C. Beltrán: Partially supported by MICINN Grants MTM2017-83816-P and MTM2017-90682-REDT and by Banco de Santander-Universidad de Cantabria Grant 21.SI01.64658. A. Hardy: Partially supported by ANR JCJC BoB (ANR-16-CE23-0003) and Labex CEMPI (ANR-11-LABX-0007-01).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltrán, C., Hardy, A. Energy of the Coulomb Gas on the Sphere at Low Temperature. Arch Rational Mech Anal 231, 2007–2017 (2019). https://doi.org/10.1007/s00205-018-1316-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1316-3

Navigation