Skip to main content
Log in

Partial Regularity for Type Two Doubly Nonlinear Parabolic Systems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider weak solutions v : \({U \times (0, T ) \rightarrow \mathbb{R}^{m}}\) of the nonlinear parabolic system

$${D\psi({v}_{t} ) = {\rm div} DF({D}_{v}),}$$

where \({\psi}\) and F are convex functions. This is a prototype for more general doubly nonlinear evolutions which arise in the study of structural properties of materials. Under the assumption that the second derivatives of F are Hölder continuous, we show that D2v and vt are locally Hölder continuous except for possibly on a lower dimensional subset of \({U \times (0, T )}\). Our approach relies on two integral identities, decay of the local space-time energy of solutions, and fractional time derivative estimates for D2v and vt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L., Gigli N., Savaré G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn Lectures inMathematics ETH Zrich. Birkhuser Verlag, Basel (2008)

    MATH  Google Scholar 

  2. Arai T.: On the existence of the solution for \(\partial \phi(u'(t))+\partial \psi(u(t))\ni f(t)\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26(1), 75–96 (1979)

    MathSciNet  MATH  Google Scholar 

  3. Blanchard D., Damlamian A., Ghidouche H.: A nonlinear system for phase change with dissipation. Differ. Integral Equ. 2, 344–362 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Bonfanti G., Frémond M., Luterotti F.: Global solution to a nonlinear system for irreversible phase changes. Adv. Math. Sci. Appl. 10, 1–24 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Campanato S.: Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa (3) 17, 175–188 (1963)

    MathSciNet  MATH  Google Scholar 

  6. Campanato S.: On the nonlinear parabolic systems in divergence form Hölder continuity and partial Hölder continuity of the solutions. . Ann. Mat. Pura Appl. 137(4), 83–122 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colli P.: On some doubly nonlinear evolution equations in Banach spaces. Jpn. J. Ind.Appl. Math. 9(2), 181–203 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colli P., Visintin A.: On a class of doubly nonlinear evolution equations. Commun. Partial Differ. Equ. 15, 737–756 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colli P., Luterotti F., Schimperna G., Stefanelli U.: Global existence for a class of generalized systems for irreversible phase which contradicts changes. NoDEA Nonlinear Differ. Equ. Appl. 9, 255–276 (2002)

    Article  MATH  Google Scholar 

  10. Da Prato G.: Spazi \({\mathcal{L}^{p, \theta}(\Omega,\delta) }\) e loro proprietà. Ann.Mat. Pura Appl.(4) 69, 383–392 (1965)

    Article  MathSciNet  Google Scholar 

  11. De Giorgi E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. Ital.(4) 1, 135–137 (1968)

    MathSciNet  MATH  Google Scholar 

  12. Di Nezza E., Palatucci G., Valdinoci E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duzaar F., Mingione G.: Second order parabolic systems, optimal regularity, and singular sets of solutions. Ann. I. H. Poincaré AN 22, 705–751 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Duzaar, F., Mingione, G., Steffen, K.: Parabolic systems with polynomial growth and regularity. Mem. Am. Math. Soc. (2011). http://doi.org/10.1090/S0065-9266-2011-00614-3

  15. Evans, L.C.: Partial Differential Equations , 2nd edn.Graduate Studies in Mathematics , vol. 19. American Mathematical Society, Providence, 2010

  16. Evans L. C., Gariepy R.: Measure Theory and Fine Properties of Functions Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    Google Scholar 

  17. Francfort G., Mielke A.: Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595, 55–91 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Giaquinta M., Martinazzi L.: An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, 2nd edn. Edizioni della Normale, Pisa (2012)

    Book  MATH  Google Scholar 

  19. Giusti E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co.Inc, River Edge (2003)

    Book  MATH  Google Scholar 

  20. Giusti E., Miranda M.: Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari. Arch. Ration. Mech. Anal. 31, 173–184 (1968)

    Article  MATH  Google Scholar 

  21. Hynd, R.: Partial regularity for doubly nonlinear parabolic systems of the first type. Indiana Univ. Math. J. (to appear)

  22. Hynd R.: Compactness methods for doubly nonlinear parabolic systems. Trans. Am. Math. Soc. 369(7), 5031–5068 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hynd, R., Lindgren, E.: Approximation of the least Rayleigh quotient for degree p homogeneous functionals. J. Funct. Anal. 272(12), 4873–4918

  24. Larsen C., Ortiz M., Richardson C.: Fracture paths from front kinetics: relaxation and rate independence. Arch. Ration. Mech. Anal. 193(3), 539–583 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lawson H.B., Osserman R.: Non-existence, non-uniqueness and irregularity of so1269 lutions to the minimal surface system. Acta Math. 139, 1–17 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Manfredi J., Vespri V.: Large time behavior of solutions to a class of doubly nonlinear parabolic equations. Electron. J. Differ. Equ. 02, 1–17 (1994)

    MathSciNet  MATH  Google Scholar 

  27. Mielke A., Rossi R.: Existence and uniqueness results for a class of rate-independent hysteresis problems. Math. Models Methods Appl. Sci. 17(1), 81–123 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mielke A., Rossi R., Savarè G.: Nonsmooth analysis of doubly nonlinear evolution equations. Calc. Var. Partial Differ. Equ. 46(1-2), 253–310 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mielke A., Ortiz M.: A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM Control Optim. Calc. Var. 14(3), 494–516 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mingione G.: The singular set of solutions to non-differentiable elliptic systems. Arch. Ration. Mech. Anal. 166(4), 287–301 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rogers C.A.: Hausdorff Measures. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  32. Schimperna G., Segatti A., Stefanelli U.: Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete Contin. Dyn. Syst. 18(1), 15–38 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Simon J.: Compact sets in the space L p(0, T ; B). Ann.Mat. Pura Appl. (4) 146, 65–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Visintin A.: Models of Phase Transitions Progress in NonlinearDifferential Equations and their Applications, vol. 28. . Birkhuser Boston, Inc., Boston (1996)

    Google Scholar 

  35. Visintin A.: Differential Models of Hysteresis Applied Mathematical Sciences, vol. 111. Springer, Berlin (1994)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Hynd.

Additional information

Communicated by F. Lin

Partially supported by NSF Grant DMS-1554130 and an MLK visiting professorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hynd, R. Partial Regularity for Type Two Doubly Nonlinear Parabolic Systems. Arch Rational Mech Anal 231, 591–636 (2019). https://doi.org/10.1007/s00205-018-1286-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1286-5

Navigation