Skip to main content
Log in

Reshetnyak Rigidity for Riemannian Manifolds

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove two rigidity theorems for maps between Riemannian manifolds. First, we prove that a Lipschitz map \({f:\mathcal{M} \to \mathcal{N}}\) between two oriented Riemannian manifolds, whose differential is almost everywhere an orientation-preserving isometry, is an isometric immersion. This theorem was previously proved using regularity theory for conformal maps; we give a new, simple proof, by generalizing the Piola identity for the cofactor operator. Second, we prove that if there exists a sequence of mapping \({f_n:\mathcal{M} \to \mathcal{N}}\), whose differentials converge in Lp to the set of orientation-preserving isometries, then there exists a subsequence converging to an isometric immersion. These results are generalizations of celebrated rigidity theorems by Liouville (J Math Pures Appl 1850) and Reshetnyak (Sib Mat Zhurnal 8(1):91–114, 1967) from Euclidean to Riemannian settings. Finally, we describe applications of these theorems to non-Euclidean elasticity and to convergence notions of manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, London (2003)

    MATH  Google Scholar 

  2. Agostiniani, V., Lucantonio, A., Lučić, D.: Heterogeneous elastic plates with in-plane modulation of the target curvature and applications to thin gel sheets, preprint, 2017

  3. Aharoni, H., Kolinski, J.M., Moshe, M., Meirzada, I., Sharon, E.: Internal stresses lead to net forces and torques on extended elastic bodies. Phys. Rev. Lett. 117, 124101 (2016)

    Article  ADS  Google Scholar 

  4. Ball, J.M.: A version of the fundamental theorem of Young measures. Proceedings of ``Partial differential equations and continuum models of phase transitions'' Lecture Notes in Physics (Eds. M. Rascle, D. Serre, M. Slemrod), vol. 344, 3–16 1989

  5. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. American Mathematical Society, Providence (2001)

    Book  MATH  Google Scholar 

  6. Bhattacharya, K., Lewicka, M., Schäffner, M.: Plates with incompatible prestrain. Arch. Rational Mech. Anal. 221(1), 143–181 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Calabi, E., Hartman, P.: On the smoothness of isometries. Duke Math. J. 37(4), 741–750 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet, P.G.: Mathematical Elasticity, Volume 1: Three-Dimensional Elasticity. Elsevier, Amsterdam, 1988

  9. Ciarlet, P.G., Mardare, S.: Nonlinear Korn inequalities in \(\mathbb{R}^n\) and immersions in \(W^{2, p}, p > n\), considered as functions of their metric tensors in \(W^{1, p}\). J. Math. Pures Appl. 105, 873–906 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, M.: Equivalence of intrinsic and extrinsic metrics of embedded manifolds, http://math.stackexchange.com/a/566430/104576

  11. Croke, C.B.: Rigidity theorems in Riemannian geometry. Geometric Methods in Inverse Problems and PDE Control (Eds. C.B. Croke, I. Lasiecka, G. Uhlmann, M. Vogelius). Springer, New York, 2004

  12. Convent, A., van Schaftingen, J.: Intrinsic colocal weak derivatives and Sobolev spaces between manifolds. Ann. Sci. Norm. Super. Pisa Cl. Sci. 16(1), 97–128 2016

  13. Danescu, A., Chevalier, C., Grenet, G., Regreny, Ph, Letartre, X., Leclercq, J.L.: Spherical curves design for micro-origami using intrinsic stress relaxation. Appl. Phys. Lett. 102(12), 123111 (2013)

    Article  ADS  Google Scholar 

  14. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, revised edn. CRC Press, Boca Raton (2015)

    Book  MATH  Google Scholar 

  15. Efrati, E.: Non-Euclidean ribbons. J. Elast. 119(1), 251–261 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eells, J., Lemaire, L.: Selected Topics in Harmonic Maps. American Mathematical Society, Providence (1983)

    Book  MATH  Google Scholar 

  17. Efrati, E., Sharon, E., Kupferman, R.: Buckling transition and boundary layer in non-Euclidean plates. PRE 80, 016602 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Efrati, E., Sharon, E., Kupferman, R.: The metric description of elasticity in residually stressed soft materials. Soft Matter 8, 8187 (2013)

    Article  ADS  Google Scholar 

  19. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  20. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Commun. Pure Appl. Math. 55, 1461–1506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gromov, M.: Partial Differential Relations. Springer, Berin-Heidelberg (1986)

    Book  MATH  Google Scholar 

  22. Hajłasz, P.: Sobolev mappings between manifolds and metric spaces, pp. 185–222. Sobolev Spaces in Mathematics I. Springer, New York (2009)

    MATH  Google Scholar 

  23. Hartman, P.: On isometries and on a theorem of liouville. Math. Z. 69, 202–210 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  24. Heinonen, J.: Lectures on Lipschitz analysis, Jyväskylän Yliopistopaino, 2005

  25. Hélein, F.: Harmonic Maps, Conservation Laws and Moving Frames, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  26. Hélein, F., Wood, J.C.: Harmonic maps. Handbook of global analysis. (Eds. D. Krupka, D. Saunders) Elsevier, Amsterdam 417–492, 2008

  27. James, R.D., Kinderlehrer, D.: Theory of diffusionless phase transformations. Proceedings of ``Partial differential equations and continuum models of phase transitions'', Lecture Notes in Physics (Eds. M. Rascle, D. Serre, M. Slemrod), vol. 344, 51–84, 1989

  28. Klein, Y., Efrati, E., Sharon, E.: Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315, 1116–1120 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kupferman, R., Maor, C.: The emergence of torsion in the continuum limit of distributed dislocations. J. Geom. Mech. 7(3), 361–387 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kupferman, R., Maor, C.: Limits of elastic models of converging Riemannian manifolds. Calc. Var. PDEs 55, 1–22 (2016). https://doi.org/10.1007/s00526-016-0979-6

    Article  MathSciNet  MATH  Google Scholar 

  31. Kupferman, R., Maor, C.: Riemannian surfaces with torsion as homogenization limits of locally-Euclidean surfaces with dislocation-type singularities. Proc. R. Soc. Edinb. A 146(04), 741–768 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kohn, R.V., O'Brien, E.: On the bending and twisting of rods with misfit. J. Elast. 130(1), 115–143 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kupferman, R., Olami, E., Segev, R.: Continuum dynamics on manifolds: application to non-Euclidean elasticity. J. Elast. 128, 61–84 (2017)

    Article  MATH  Google Scholar 

  34. Klein, Y., Venkataramani, S., Sharon, E.: Experimental study of shape transitions and energy scaling in thin non-euclidean plates. PRL 106, 118303 (2011)

    Article  ADS  Google Scholar 

  35. Kupferman, R., Shamai, Y.: Incompatible elasticity and the immersion of non-flat Riemannian manifolds in Euclidean space. Isr. J. Math. 190(1), 135–156 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liouville, J.: Théoréme sur l'équation \(dx^2+dy^2+dz^2 = \lambda (d\alpha ^2+d\beta ^2 + d\gamma ^2)\). J. Math, Pures Appl (1850)

    Google Scholar 

  37. Lieb, E.H., Loss, M.: Analysis, 2nd edn. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  38. Lorent, A.: On functions whose symmetric part of gradient agree and a generalization of Reshetnyak's compactness theorem. Calc. Var. PDEs 48(3), 625–665 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lorent, A.: Rigidity of pairs of quasiregular mappings whose symmetric part of gradient are close. Ann. Inst. H. Poincaré Anal. Nonlinear 33(1), 23–65 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Lewicka, M., Pakzad, M.R.: Scaling laws for non-Euclidean plates and the \(W^{2,2}\) isometric immersions of Riemannian metrics. ESAIM Control Optim. Calc. Var. 17, 1158–1173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lewicka, M., Raoult, A., Ricciotti, D.: Plates with incompatible prestrain of higher order. Ann. Inst. H. Poincaré Anal. Nonlinear 34, 1883–1912 2017

    Article  MATH  Google Scholar 

  42. Liimatainen, T., Salo, M.: N-harmonic coordinates and the regularity of conformal mappings. Math. Res. Lett. 21(2), 341–361 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Courier Dover Publications, New York (1983)

    MATH  Google Scholar 

  44. Maor, C., Shachar, A.: On the role of curvature in the elastic energy of non-Euclidean thin bodies, arXiv:1801.02207

  45. Olbermann, H.: Energy scaling law for a single disclination in a thin elastic sheet. Arch. Rat. Mech. Anal. 224(3), 985–1019 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ozakin, A., Yavari, A.: A geometric theory of thermal stresses. J. Math. Phys. 51, 032902 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Reshetnyak, Yu.G.: Liouville's theorem on conformal mappings for minimal regularity assumptions. Sib. Mat. Zhurnal 8(4), 835–840 (1967)

    Google Scholar 

  48. Reshetnyak, Yu.G.: On the stability of conformal mappings in multidimensional spaces. Sib. Mat. Zhurnal 8(1), 91–114 (1967)

    Google Scholar 

  49. Reshetnyak, Yu.G.: Differential properties of quasiconformal mappings and conformal mappings of Riemannian spaces. Sib. Mat. Zhurnal 19(5), 1166–1184 (1978)

    MathSciNet  Google Scholar 

  50. Reshetnyak, Yu.G.: Stability Theorems in Geometry and Analysis. Springer, Netherlands (1994)

    Book  MATH  Google Scholar 

  51. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 5, 3rd edn, Publish or Perish, 1999

  52. Sharon, E., Roman, B., Swinney, H.L.: Geometrically driven wrinkling observed in free plastic sheets and leaves. PRE 75, 046211 (2007)

    Article  ADS  Google Scholar 

  53. Taylor, M.: Existence and regularity of isometries. Trans. Am. Math. Soc. 358(6), 2415–2423 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wehrheim, K.: Uhlenbeck Compactness. European Mathematical Society, Zurich (2004)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Pavel Giterman,Amitai Yuval andYael Karshon for useful discussions. We also thank Deane Yang for suggesting the current form of Lemma 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asaf Shachar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by D. Kinderlehrer

This research was partially supported by the Israel Science Foundation (Grant No. 1035/17), and by a grant from the Ministry of Science, Technology and Space, Israel and the Russian Foundation for Basic Research, the Russian Federation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupferman, R., Maor, C. & Shachar, A. Reshetnyak Rigidity for Riemannian Manifolds. Arch Rational Mech Anal 231, 367–408 (2019). https://doi.org/10.1007/s00205-018-1282-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1282-9

Navigation