Skip to main content

Advertisement

Log in

Convergence From Power-Law to Logarithm-Law in Nonlinear Scalar Field Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this note, we uncover a relation between power-law nonlinear scalar field equations and logarithmic-law scalar field equations.We show that the ground state solutions, as p\({\downarrow}\) 2 for the power-law scalar field equations, converge to the ground state solutions of the logarithmic-law equations. As an application of this relation, we show that the associated Sobolev inequalities for imbedding from W1,2(\({\mathbb{R}^{N}}\)) into Lp (\({\mathbb{R}^{N}}\)) converge to an associated logarithmic Sobolev inequality, giving a new proof of the latter inequality due to Lieb–Loss (Analysis, 2nd edn, Graduate studies in mathematics, 14, American Mathematical Society, Providence, 2001). Using this relation, we also derive a Liouville type theorem for positive solutions of the nonlinear scalar field equation with power-law nonlinearity, giving a sharp version of an earlier result in Felmer et al. (Ann Inst Henri Poincaré Anal Non Linéaire 25(1): 105–119, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A., Clarke F.H.: Gross’s logarithmic Sobolev inequality: a simple proof. Am. J. Math. 101(6), 1265–1269 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bahri A., Lions P.L.: Morse index of some min-max critical points. I. Application to multiplicity results. Commun. Pure Appl. Math. 41(8), 1027–1037 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berestycki H, Lions P.L.: Nonlinear scalar field equations, I existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berestycki H, Lions P.L.: Nonlinear scalar field equations, II existence of infinitely many solutions. Arch. Ration. Mech. Anal. 82(4), 347–375 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berezin, F.A., Shubin, M.: The Schrödinger Equation. Springer (2012)

  6. Białynicki-Birula I., Mycielski J.: Wave equations with logarithmic nonlinearities. Bull. Acad. Pol. Sci. Cl 3(23), 461–466 (1975)

    MathSciNet  Google Scholar 

  7. Białynicki-Birula I., Mycielski J.: Nonlinear wave mechanics. Ann. Phys. 100(1–2), 62–93 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  8. Cazenave T., Lions P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    Article  ADS  MATH  Google Scholar 

  9. d’Avenia P., Montefusco E., Squassina M.: On the logarithmic Schrödinger equation. Commun. Contemp. Math. 16(2), 1350032 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Del Pino M., Dolbeault J.: The optimal Euclidean L p-Sobolev logarithmic inequality. J. Funct. Anal. 197(1), 151–161 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Felmer P.L., Quaas A., Tang M., Yu J.: Monotonicity properties for ground states of the scalar field equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25(1), 105–119 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Floer A., Weinstein A.: Nonspreading wave pockets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gidas B., Ni W.M., Nirenberg L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer (2001)

  15. Gross L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kwong M.K.: Uniqueness of positive solutions of Δu − u +u p = 0 in \(\mathbb{R}^{n}\). Arch. Ration. Mech. Anal.1053 243–266 (1989)

    Article  Google Scholar 

  17. Lieb E.H., Loss M.: Analysis Second edition. Graduate Studies in Mathematics 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  18. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, p. 65 (1986)

  19. Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math.Phys. 43(4), 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Serrin J., Tang M.: Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ. Math. J. 49(3), 897–923 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Simon B.: Schrödinger semigroups. Bull. Am. Math. Soc. 7(3), 447–526 (1982)

    Article  MATH  Google Scholar 

  22. Squassina M., Szulkin A.: Multiple solutions to logarithmic Schrödinger equations with periodic potential. Calc. Var. Partial Differ. Equ. 54(1), 585–597 (2014)

    Article  MATH  Google Scholar 

  23. Stam A.J.: Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inf. Control 2(2), 101–112 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  24. Strauss W.A.: Existence of solitarywaves in higher dimensions.Commun.Math. Phys. 55(2), 149–162 (1977)

    Article  ADS  Google Scholar 

  25. Tanaka, K., Zhang, C.: Multi-bump solutions for logarithmic Schrödinger equations. Calc. Var. Partial Differ. Equ. 56(33) (2017)

  26. Troy W.C.: Uniqueness of positive ground state solutions of the logarithmic Schrödinger equation. Arch. Ration. Mech. Anal. 222(3), 1581–1600 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Weissler F.B.: Logarithmic Sobolev inequalities for the heat-diffusion semigroup. Trans. Am. Math. Soc. 237, 255–269 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zloshchastiev K.G.: Logarithmic nonlinearity in theories of quantum gravity: origin of time and observational consequences. Grav. Cosmol. 16, 288–297 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Znojil M., Ruzicka F., Zloshchastiev K.G.: Schrödinger equations with logarithmic self-interactions: from antilinear \({\mathcal{PT}}\)-symmetry to the nonlinear coupling of channels. Symmetry 9(8), 165 (2017) https://doi.org/10.3390/sym9080165

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qiang Wang.

Additional information

Communicated by P. Rabinowitz

Dedicated to Professor Yiming Long on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZQ., Zhang, C. Convergence From Power-Law to Logarithm-Law in Nonlinear Scalar Field Equations. Arch Rational Mech Anal 231, 45–61 (2019). https://doi.org/10.1007/s00205-018-1270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1270-0

Navigation