Skip to main content
Log in

Enhanced Dissipation and Axisymmetrization of Two-Dimensional Viscous Vortices

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper is devoted to the stability analysis of the Lamb–Oseen vortex in the regime of high circulation Reynolds numbers. When strongly localized perturbations are applied, it is shown that the vortex relaxes to axisymmetry in a time proportional to \({Re^{2/3}}\) , which is substantially shorter than the diffusion time scale given by the viscosity. This enhanced dissipation effect is due to the differential rotation inside the vortex core. Our result relies on a recent work by Li et al. (Pseudospectral and spectral bounds for the Oseen vortices operator, 2017, arXiv:1701.06269), where optimal resolvent estimates for the linearized operator at Oseen’s vortex are established. A comparison is made with the predictions that can be found in the physical literature, and with the rigorous results that were obtained for shear flows using different techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajer, K., Bassom, A.P., Gilbert, A.D.: Accelerated diffusion in the centre of a vortex. J. Fluid Mech. 437, 395–411 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bassom, A.P., Gilbert, A.D.: The spiral wind-up of vorticity in an inviscid planar vortex. J. Fluid Mech. 371, 109–140 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bassom, A.P., Gilbert, A.D.: The spiral wind-up and dissipation of vorticity and a passive scalar in a strained planar vortex. J. Fluid Mech. 398, 245–270 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bassom, A.P., Gilbert, A.D.: The relaxation of vorticity fluctuations in locally elliptical streamlines. Proc. R. Soc. A 456, 295–314 (2000)

    Article  ADS  MATH  Google Scholar 

  5. Bedrossian, J., Coti Zelati, M.: Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shearflows. Arch. Ration. Mech. Anal. 224, 1161–1204 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bedrossian, J., Masmousi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Eulerequations. Publ. Math. IHES 122, 195–300 (2015)

    Article  Google Scholar 

  7. Bedrossian, J., Masmousi, N., Vicol, V.: Enhanced dissipation and inviscid damping in the inviscid limit of theNavier-Stokes equations near the two-dimensional Couette flow. Arch. Ration. Mech. Anal. 219, 1087–1159 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bedrossian, J., Vicol, V., Wang, Fei: The Sobolev stability threshold for 2D shear flows near Couette, J. Nonlinear Sci., 1–25 2017

  9. Bernoff, A.J., Lingevitch, J.F.: Rapid relaxation of an axisymmetric vortex. Phys. Fluids 6, 3717–3723 (1994)

    Article  ADS  MATH  Google Scholar 

  10. Bouchet, F., Morita, H.: Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations. Physica D 239, 948–966 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Brézis, H., Gallouët, Th: Nonlinear Schrödinger evolution equations. Nonlinear Anal. Theory Methods Appl. 4, 677–681 (1980)

    Article  MATH  Google Scholar 

  12. Brézis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Diff. Equ. 5, 773–789 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carlen, E., Loss, M.: Optimal smoothing and decay estimates for viscously damped conservation laws, with applicationsto the 2-D Navier-Stokes equation. Duke Math. J. 81, 135–157 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics. Oxford University Press, Oxford, An Introduction toRotating Fluids and the Navier-Stokes Equations (2006)

    MATH  Google Scholar 

  15. Deng, W.: Resolvent estimates for a two-dimensional non-self-adjoint operator. Commun. Pure Appl. Anal. 12, 547–596 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deng, W.: Pseudospectrum for Oseen vortices operators. Int. Math Res. Not. 2013, 1935–1999 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gallagher, I., Gallay, Th, Nier, F.: Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator. Int. Math. Res. Not. 2009, 2147–2199 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Gallay, Th.: Interaction of vortices in weakly viscous planar flows, Arch. Ration. Mech. Anal. 200, 445–4902011

  19. Gallay, Th.: Stability and interaction of vortices in two-dimensional viscous flows, Discrete Contin. Dyn. Syst. Ser.S 5, 1091–1131 2012

  20. Gallay, Th, Maekawa, Y.: Three-dimensional stability of Burgers vortices. Commun. Math. Phys. 302, 477–511 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Gallay, Th., Maekawa, Y.: Existence and stability of viscous vortices. In: Handbook of Mathematical Analysis inMechanics of Viscous Fluids (Eds. Giga Y. and Novotny A.), Springer, Berlin, 2017

  22. Gallay, Th, Wayne, C.E.: Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticityequations on \({\mathbb{R}}^2\). Arch. Ration. Mech. Anal. 163, 209–258 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gallay, Th, Wayne, C.E.: Global stability of vortex solutions of the two-dimensional Navier-Stokes equation. Commun. Math. Phys. 255, 97–129 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Gallay, Th, Wayne, C.E.: Existence and stability of asymmetric Burgers vortices. J. Math. Fluid Mech. 9, 243–261 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Gallay, Th, Rodrigues, L.M.: Sur le temps de vie de la turbulence bidimensionnelle (in French). Ann. Fac. Sci. Toulouse 17, 719–733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Helffer, B.: Spectral theory and its applications. In: Cambridge Studies in Advanced Mathematics, vol. 139, CambridgeUniversity Press, Cambridge, 2013

  27. Jiménez, J., Moffatt, H.K., Vasco, C.: The structure of the vortices in freely decaying two-dimensional turbulence. J. Fluid Mech. 313, 209–222 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Kato, T.: Perturbation theory for linear operators. In: Grundlehren der mathematischen Wissenschaften, vol. 132, Springer, New York, 1966

  29. Li, T., Wei, D., Zhang,Z.: Pseudospectral and spectral bounds for the Oseen vortices operator. arXiv:1701.06269 2017

  30. Lieb, E., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  31. Lundgren, T.S.: Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25, 2193–2203 (1982)

    Article  ADS  MATH  Google Scholar 

  32. Maekawa, Y.: Spectral properties of the linearization at the Burgers vortex in the high rotation limit. J. Math. FluidsMech. 13, 515–532 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Maekawa, Y.: On the existence of Burgers vortices for high Reynolds numbers. J. Math. Anal. Appl. 349, 181–200 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maekawa, Y.: Existence of asymmetric Burgers vortices and their asymptotic behavior at large circulations. Math. Models Methods Appl. Sci. 19, 669–705 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Moffatt, H.K., Kida, S., Ohkitani, K.: Stretched vortices–the sinews of turbulence; large-Reynolds-numberasymptotics. J. Fluids Mech. 259, 241–264 (1994)

    Article  ADS  Google Scholar 

  36. Ogawa, T., Taniuchi, Y.: The limiting uniqueness criterion by vorticity for Navier-Stokes equations in Besov spaces. Tohoku Math. J. 56, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. In: Applied MathematicalSciences, vol. 44, Springer, New York, 1983

  38. Prochazka, A., Pullin, D.I.: On the two-dimensional stability of the axisymmetric Burgers vortex. Phys. Fluid 7, 1788–1790 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Prochazka, A., Pullin, D.I.: Structure and stability of non-symmetric Burgers vortices. J. Fluid Mech. 363, 199–228 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Rhines, P.B., Young, W.R.: How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133, 133–145 (1983)

    Article  ADS  MATH  Google Scholar 

  41. Robinson, A.C., Saffman, P.G.: Stability and structure of stretched vortices, Stud. Appl. Math. 70, 163–1811984

  42. Ting, L., Klein, R.: Viscous Vortical Flows. Lecture Notes in Physics, vol. 374. Springer, Berlin (1991)

    Google Scholar 

  43. Ting, L., Tung, C.: Motion and decay of a vortex in a nonuniform stream. Phys. Fluids 8, 1039–1051 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping for a class of monotone shear flow in Sobolev spaces. Commun. Pure Appl, Math (2017)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Gallay.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallay, T. Enhanced Dissipation and Axisymmetrization of Two-Dimensional Viscous Vortices. Arch Rational Mech Anal 230, 939–975 (2018). https://doi.org/10.1007/s00205-018-1262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1262-0

Navigation