Advertisement

Archive for Rational Mechanics and Analysis

, Volume 230, Issue 1, pp 125–184 | Cite as

On the Measure and the Structure of the Free Boundary of the Lower Dimensional Obstacle Problem

  • Matteo Focardi
  • Emanuele Spadaro
Article
  • 78 Downloads

Abstract

We provide a thorough description of the free boundary for the lower dimensional obstacle problem in \({\mathbb{R}^{n+1}}\) up to sets of null \({\mathcal{H}^{n-1}}\) measure. In particular, we prove
  1. (i)

    local finiteness of the (n−1)-dimensional Hausdorff measure of the free boundary,

     
  2. (ii)

    \({\mathcal{H}^{n-1}}\)-rectifiability of the free boundary,

     
  3. (iii)

    classification of the frequencies up to a set of Hausdorff dimension at most (n−2) and classification of the blow-ups at \({\mathcal{H}^{n-1}}\) almost every free boundary point.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almgren, Jr. F.J.: Almgren's Big Regularity Paper. World Scientific Monograph Series in Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 2000Google Scholar
  2. 2.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)zbMATHGoogle Scholar
  3. 3.
    Andersson, J.: Optimal regularity for the Signorini problem and its free boundary. Invent. Math. 204(1), 1–82 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Athanasopoulos, I., Caffarelli, L.A.: Optimal regularity of lower dimensional obstacle problems. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310, 49–66, 226 (2004) (translation in J. Math. Sci. (N. Y.), 132 2006, no. 3, 274–284).Google Scholar
  5. 5.
    Athanasopoulos, I., Caffarelli, L.A., Salsa, S.: The structure of the free boundary for lower dimensional obstacle problems. Am. J. Math. 130(2), 485–498 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Azzam, J., Tolsa, X.: Characterization of \(n\)-rectifiability in terms of Jones' square function: part II. Geom. Funct. Anal. 25(5), 1371–1412 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barrios, B., Figalli, A., Ros-Oton, X.: Global regularity for the free boundary in the obstacle problem for the fractional Laplacian. Am. J. Math. (2017) (in press)Google Scholar
  8. 8.
    Caffarelli, L.A.: The regularity of free boundaries in higher dimensions. Acta Math. 139(3–4), 155–184 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Caffarelli, L.A.: Further regularity for the Signorini problem. Commun. Partial Differ. Equ. 4, 1067–1075 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Caffarelli, L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4(4–5), 383–402 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Caffarelli, L.A., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Caffarelli, L.A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    David, G., Toro, T.: Reifenberg parameterizations for sets with holes. Mem. Am. Math. Soc. 215(1012), vi+102 (2012)Google Scholar
  14. 14.
    De Silva, D., Savin, O.: \(C^\infty \) regularity of certain thin free boundaries. Indiana Univ. Math. J. 64(5), 1575–1608 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    De Lellis, C., Spadaro, E.: Regularity of area minimizing currents III: blow-up. Ann. Math. (2) 183(2), 577–617 (2016)Google Scholar
  16. 16.
    De Lellis, C., Marchese, A., Spadaro, E., Valtorta, D.: Rectifiability and Upper Minkowski Bounds for Singularities of Harmonic Q-Valued Maps. Comment. Math. Helv. (To appear)Google Scholar
  17. 17.
    Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7(1), 77–116 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Focardi, M., Gelli, M.S., Spadaro, E.: Monotonicity formulas for obstacle problems with Lipschitz coefficients. Calc. Var. Partial Differ. Equ. 54(2), 1547–1573 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Focardi, M., Geraci, F., Spadaro, E.: The classical obstacle problem for nonlinear variational energies. Nonlinear Anal. 154, 7187 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Focardi, M., Geraci, F., Spadaro, E.: Quasi-monotonicity formulas for classical obstacle problems with Sobolev coefficients and applications (To appear)Google Scholar
  21. 21.
    Focardi, M., Marchese, A., Spadaro, E.: Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result. J. Funct. Anal. 268(11), 3290–3325 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Focardi, M., Spadaro, E.: An epiperimetric inequality for the fractional obstacle problem. Adv. Differ. Equ. 21(1–2), 153–200 (2016)zbMATHGoogle Scholar
  23. 23.
    Focardi,M., Spadaro, E.: How a minimal surface leaves a thin obstacle (To appear)Google Scholar
  24. 24.
    Focardi, M., Spadaro, E.: Rectifiability of the free boundary for the fractional obstacle problem (To appear)Google Scholar
  25. 25.
    Frehse, J.: Two-dimensional variational problems with thin obstacles. Math. Z. 143, 279–288 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Frehse, J.: On Signorini's problem and variational problems with thin obstacles. Ann. Scuola Norm. Sup. Pisa 4, 343–362 (1977)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Garofalo, N., Petrosyan, A.: Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem. Invent. Math. 177(2), 415–461 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Garofalo, N., Petrosyan, A., Pop, C., Smit Vega Garcia, M.: Regularity of the free boundary for the obstacle problem for the fractional Laplacian with drift. Ann. Inst. H. Poincar Anal. Non Linéaire, 34(3), 533–570 (2017)Google Scholar
  29. 29.
    Garofalo, N., Ros-Oton,X.: Structure and regularity of the singular set in the obstacle problem for the fractional Laplacian. arXiv:1704.00097
  30. 30.
    Geraci, F.: The Classical Obstacle Problem for Nonlinear Variational Energies and Related Problems. Ph.D. thesis, University of Firenze, 2016Google Scholar
  31. 31.
    Geraci, F.: An Epiperimetric Inequality for the Lower Dimensional Obstacle Problem. arXiv:1709.00996.
  32. 32.
    Hopf, E.: Über den funktionalen, insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen zweiter Ordnung. (German). Math. Z. 34(1), 194–233 (1932)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Jones, P.: Rectifiable sets and the traveling salesman problem. Invent. Math. 102(1), 1–15 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Kinderlehrer, D.: The smoothness of the solution of the boundary obstacle problem. J. Math. Pures Appl. 60, 193–212 (1981)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Koch, H., Petrosyan, A., Shi, W.: Higher regularity of the free boundary in the elliptic Signorini problem. Nonlinear Anal. 126, 3–44 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Krummel, B., Wickramasekera, N.: Fine Properties of Branch Point Singularities: Two-Valued Harmonic Functions. arXiv:1311.0923
  37. 37.
    Krummel, B., Wickramasekera, N.: Fine Properties of Branch Point Singularities: Dirichlet Energy Minimizing Multi-Valued Functions. arXiv:1711.06222
  38. 38.
    Monneau, R.: On the number of singularities for the obstacle problem in two dimensions. J. Geom. Anal. 13(2), 359–389 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Naber, A., Valtorta, D.: Rectifiable–Reifenberg and the regularity of stationary and minimizing harmonic maps. Ann. Math. (2) 185(1), 131–227 (2017)Google Scholar
  40. 40.
    Naber, A., Valtorta, D.: The Singular Structure and Regularity of Stationary and Minimizing Varifolds. arXiv:1505.03428
  41. 41.
    Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V. (eds.): NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.14 of 2016-12-21
  42. 42.
    Ros-Oton, X., Serra, J.: Boundary regularity for fully nonlinear integro-differential equations. Duke Math. J. 165(11), 2079–2154 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Uraltseva, N.N.: Hölder continuity of gradients of solutions of parabolic equations with boundary conditions of Signorini type. Dokl. Akad. Nauk SSSR 280, 563–565 (1985)MathSciNetGoogle Scholar
  45. 45.
    Uraltseva, N.N.: On the regularity of solutions of variational inequalities. (Russian) Uspekhi Mat. Nauk 42(6(258)), 151–174, 248 (1987)Google Scholar
  46. 46.
    Weiss, G.S.: A homogeneity improvement approach to the obstacle problem. Invent. Math. 138(1), 23–50 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DiMaIUniversità degli Studi di FirenzeFlorenceItaly
  2. 2.Universität LeipzigLeipzigGermany
  3. 3.Università di Roma La SapienzaRomeItaly

Personalised recommendations